期刊文献+

基于贡献因子BP神经网络的地磁适配性研究 被引量:1

Research on adaptability evaluation of underground geomagnetic positioning based on BP neural network with contribution factor
下载PDF
导出
摘要 文章针对井下地磁空间分布特点及小样本数据,提出一种基于贡献因子后向传播(back propagation,BP)神经网络的井下地磁适配性评价方法;通过对井下地磁空间分布7个特征参数的回归分析,确定其在适配性评价过程的贡献因子,将贡献因子作为BP神经网络先验输入权值,进行地磁适配性评价。试验选取45个人防工程小区域样本,计算地磁标准差、相关系数、地磁粗糙度等7个特征参数,对贝叶斯判别法、线性距离判别法、二次函数判别法、普通BP神经网络和基于贡献因子BP神经网络5种评价方法进行适配性评价精度对比。试验结果表明,贝叶斯判别法、线性距离判别法、二次函数判别法3种方法对训练样本的判别准确率为80%左右,但测试样本准确率仅50%左右,判别精度不高;而基于贡献因子BP神经网络对训练样本的判别准确率达到了95%,测试样本准确率接近73%,明显优于传统适配性评价方法,且一定程度上克服了普通BP神经网络易陷入局部收敛和收敛速度慢的缺点。基于贡献因子BP神经网络的评价方法能够有效避免人工构造评价规则的盲目性和样本数量较少的缺点,评价过程快捷,可为实现井下地磁定位导航的智能化提供基础。 This paper proposes a new method of the adaptability evaluation based on back propagation(BP)neural network with the contribution factor,which is suitable for the small sample of underground geomagnetic data.The BP evaluation of geomagnetic adaptability is carried out using the regression analysis of multiple characteristic parameters of underground geomagnetic spatial distribution,determining the contribution factor of the adaptability evaluation process,and calculating the BP prior input weight.In the experiment,45 plots samples of civil air defence engineering were selected,and seven characteristic parameters of geomagnetic spatial distribution including standard deviation,correlation coefficient and roughness were calculated.And the accuracy comparison of the adaptability evaluation of the five methods including Bayesian discriminant method,linear distance discriminant method,quadratic function discriminant method,generic BP neural network and BP neural network with the contribution factor was carried out.The experimental results showed that the accuracy rate in training samples of the Bayesian discriminant method,the linear distance discriminant method and the quadratic function discriminant method was about 80%,while the accuracy rate in test samples was only about 50%,and the discriminating precision was low.The accuracy rate in training samples of BP neural network with the contribution factor reached more than 95%,and the accuracy rate in test samples reached 73%,which was obviously superior to the traditional adaptability evaluation methods,and overcame the shortages of the generic BP neural network that was easy to fall into local convergence and had slow convergence rate to some extent.This method can effectively avoid the blindness of artificial construction evaluation rules and the shortcomings of the small sample scale,and the evaluation process is quite fast.It can provide a foundation for the intelligence of underground geomagnetic positioning navigation.
作者 汪金花 张博 吴兵 郭云飞 WANG Jinhua;ZHANG Bo;WU Bing;GUO Yunfei(School of Mining Engineering,North China University of Science and Technology,Tangshan 063210,China;Aerial Photogrammetry and Remote Sensing Co.,Ltd.,China National Administration of Coal Geology,Xi’an 710199,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第12期1668-1675,共8页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(51374089) 河北省自然科学基金资助项目(E2018209345) 河北省博士研究生创新资助项目(CXZZBS2017123)。
关键词 井下地磁分布 地磁适配性评价 BP神经网络 回归分析 贡献因子 underground geomagnetic distribution geomagnetic adaptability evaluation back propagation(BP)neural network regression analysis contribution factor
  • 相关文献

参考文献16

二级参考文献95

  • 1程华,田金文,马杰,龚俊斌.基于双近邻模式和最近距离的三维地形匹配区选择[J].宇航学报,2008,29(2):631-636. 被引量:4
  • 2许大欣.利用重力异常匹配技术实现潜艇导航[J].地球物理学报,2005,48(4):812-816. 被引量:70
  • 3李德华,杨灿,胡昌赤.地形匹配区选择准则研究[J].华中理工大学学报,1996,24(2):7-8. 被引量:31
  • 4李雄伟,刘建业,康国华.熵的地形信息分析在高程匹配中的应用[J].应用科学学报,2006,24(6):608-612. 被引量:22
  • 5曹菲.景像匹配制导基准图生成与评估技术研究[D]博士学位论文.西安:第二炮兵工程学院,2006.
  • 6JIANG Li. Information mining in remote sensing imagery[ D ]. The Graduate College at the University of Nebraska in Partial Fulfillment of Requirements for the Degree of Doctor of Philosophy, 2003.
  • 7Iwaki F,Kakihara M,Sasaki M.Recognition of vehicle's location for navigation[C].The Vehicle Navigation and Information Systems Conference,Toronto,Ontario,Canada,September 11-13,1989.
  • 8Hamada T,Shigetomi T,Orimo Y,et al.Study on underwater navigation system for long-range autonomous underwater vehicles using geomagnetic and bathymetric information[C].The 27th International Offshore and Polar Engineering Conference,Lisbon,Portugal,July 1-6,2007.
  • 9Xiaojiao Ma, Hongwei Liu, Di Xiao, Hankui Li. Key Technologies of Geomagnetic Aided Inertial Navigation System[C]. New York: IEEE Intelligent Vehicles Symposium, 2009, VOLSI AND 2. 464-469.
  • 10Odejobi O A, Wong S H S, Beaumont A J. A fuzzy decision tree-based duration model for standard Yoruba text-to-speech synthesis[J]. Computer Speech and Language, 2007, 21(2): 325-349.

共引文献134

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部