期刊文献+

基于神经网络的金刚石色心自动识别算法实现

Realization of automatic recognition algorithm of diamond color center based on neural network
下载PDF
导出
摘要 文章研究了金刚石氮-空位(nitrogen-vacancy,NV)色心量子调控平台中的NV色心位置识别和检测。在目前的实验平台上,对于NV色心位置的辨别主要依赖实验人员以往的经验,再借助光探测磁共振(optically detected magnetic resonance,ODMR)实验来确认是否为NV色心。为了更精准地检测色心,文章把辨别金刚石NV色心作为目标检测问题来处理,对已有的基于神经网络的目标检测框架进行研究,并针对NV色心的识别问题进行改进,提出了基于卷积神经网络的金刚石NV色心自动识别框架。与人工识别相比,该框架具有识别准确率高、识别速度快、抗噪能力强等优势。 The recognition and detection of nitrogen-vacancy(NV)color center in the quantum control platform based on diamond NV color center are studied.On the current experimental platform,the identification of NV color center mainly depends on the previous experience of the experimenters,and then the optically detected magnetic resonance(ODMR)experiment is used to confirm whether it is NV color center.In order to detect color centers more accurately,this paper treats the identification of diamond NV color centers as the problem of target detection,studies the existing framework of target detection based on neural network,and improves the recognition of NV color centers.Then,a framework of automatic recognition of diamond NV color centers based on convolutional neural network is proposed.Compared with artificial recognition,the framework has the advantages of high recognition accuracy,fast recognition speed and strong anti-noise ability.
作者 郑子贤 张小涵 陈冰 徐南阳 ZHENG Zixian;ZHANG Xiaohan;CHEN Bing;XU Nanyang(School of Electronic Science and Applied Physics,Hefei University of Technology,Hefei 230601,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第12期1723-1728,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家重点研发计划资助项目(2018YFA0306600) 国家自然科学基金资助项目(11604069,61376128) 安徽省自然科学基金资助项目(1708085QA09) 量子光学与光量子器件国家重点实验室开放课题资助项目(KF201802)。
关键词 金刚石氮-空位(NV)色心 卷积神经网络 目标检测 多尺度检测 平均准确率 nitrogen-vacancy(NV)color centers in diamond convolutional neural network object detection multiscale detection average precision
  • 相关文献

参考文献5

二级参考文献61

  • 1杜成,苏光大.用于人脸识别的正面人脸图像眼镜摘除[J].清华大学学报(自然科学版),2005,45(7):928-930. 被引量:11
  • 2Deng Li, Yu Dong. Deep learning for signal and infor- mation processing[ R]. Microsoft Research, 2013.
  • 3胡晓林,朱军.深度学习——机器学习领域的新热点[J].中国计算机学会通讯,2013,9(7):64—69.
  • 4Bengio Yoshua. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2009,2 (1): 1 -27.
  • 5Duarte-Carvajalino J M, Yu G S, Carin L, et al. Task- driven adaptive statistical compressive sensing of gaussi- an mixture models [ J J. IEEE Transactions on Signal Processing, 2013, 61(3): 585-600.
  • 6Abdel-Rahman E M, Mutanga O, Adam E, et al. De- tecting sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers [ J ]. 1S- PRS Journal of Photogrammetry and Remote Sensing, 2014, 88:48-59.
  • 7Sarikaya R,Hinton G E, Deoras A. Application of deepbelief networks for natural language understanding [ J ],IEEE Transactions on Audio,Speech and Language Pro-cessing,2011, 22(4) : 778 -784.
  • 8Fischer A, Igel C. Training restricted Boltzmann ma-chines :an introduction [ J ] . Pattern Recognition, 2014,47(1) :25 -39.
  • 9Wan L,Zeiler M,Zhang S X,et al. Regularization ofneural networks using dropconnect[C] //Proceedings ofthe 30th International Conference on Machine Learning.AUanta:IMLS, 2013: 2095 -2103.
  • 10Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks[ C] //Proceedings of 20thAnnual Conference on Neural Information Processing Sys-tems. Vancouver : Neural information processing systemfoundation,2007 : 153 - 160.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部