期刊文献+

[Ag14]异构引发的纺锤形Ag58团簇的形成 被引量:2

Formation of Spindle-Like Ag58 Cluster Induced by Isomerization of[Ag14]
原文传递
导出
摘要 原子精确的纳米硫银团簇由于其迷人的结构特征和潜在的应用价值而受到研究者的广泛关注.本工作通过溶液自组装的方法合成了两个新型核壳结构的硫银团簇[Ag56S12(tBuS)20(CF3CO2)12]•6CH3CN•8H2O(Ag56)和[Ag58S12-(tBuS)20(CF3CO2)14(CH3CN)6]•6CH3CN(Ag58).单晶XRD结构表征表明两个硫银团簇的内部均包裹着Ag14单元:Ag56中Ag14内核单元为常见菱形十二面体结构,而Ag58中Ag14内核单元为罕见的纺锤形结构.Ag14内核单元的异构引起了两个硫银团簇外壳结构和形貌的变化,相比于Ag56中12个Ag6环形结构单元相互连接形成的球状外壳,Ag58的外层银原子按照“Ag4-Ag8-Ag10-Ag10-Ag8-Ag4”层状分布的方式形成了纺锤形外壳.紫外-可见吸收光谱和荧光光谱研究表明,硫银团簇Ag56和Ag58结构的差异对其能级以及荧光性质都会产生影响.本工作中两个新型硫银团簇的成功分离丰富了硫银团簇的研究体系和结构类型,并为进一步探究硫银团簇的形成过程和性质提供了新的思路. The atomically precise silver(I)-thiolate clusters in nanoscale have attracted extensive attention for years due to their attractive aesthetic structures and potential applications.Herein,two novel core-shell structured silver(I)-thiolate clusters of[Ag56S12(tBuS)20(CF3CO2)12]•6CH3CN•8H2O(abbreviated as Ag56)and[Ag58S12(tBuS)20(CF3CO2)14(CH3CN)6]•6CH3CN(Ag58)are prepared by employing the self-assembly method in solution.Especially,with the introduction of dimethylformamide(DMF)and bis(diphenylphosphino)methane(DPPM),the tBuSAg precursor reacted with CF3CO2Ag to produce a novel cluster Ag58 instead of Ag56 that has a similar structure with previous reports.X-ray structural analysis indicates that both clusters have Ag14 core units.But different from the common dodecahedron structure in Ag56,the spindle-shaped Ag14 structure in Ag58 is discovered for the first time and then induces the shell structure of Ag58 to form a rare spindle shape,in which silver atoms are layered in a form of“Ag4-Ag8-Ag10-Ag10-Ag8-Ag4”.Notably,the spindle-shaped Ag14 is formed by rhombic dodecahedron being symmetrically pulled outward.Thus,there are obvious similarities and differences between the two Ag14 core structures.Compared with the previously reported the face-centered cubic Ag14 prepared by solvothermal methods,the rhombic dodecahedron and the rhombic dodecahedron-like(spindle)Ag14 were obtained at room temperature,which indicates that the formation of the clusters is a thermodynamic control.However,the change of solvent and auxiliary ligands also caused the Ag14 rhombohedral dodecahedron to deform and transform into a spindle-shaped structure,proving that the formation of the clusters is also a process controlled by kinetics.These prove that the synthesis of clusters is a process dominated by both of kinetics and thermodynamics.The UV-Vis absorption and fluorescence spectra show that the structure discrepancies of the two clusters deriving from the isomerization of Ag14 units significantly affect the energy levels and fluorescence properties of the clusters.This study enriches the thiolate-silver cluster family and provides new samples and insights for understanding the formation mechanism and properties of such core-shell architectures.
作者 沈扬林 金俊玲 段光雄 谢云鹏 卢兴 Shen Yanglin;Jin Junling;Duan Guangxiong;Xie Yunpeng;Lu Xing(State Key Laboratory of Materials Processing and Die&Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology(HUST),Wuhan 430074,China;Henan Key Laboratory of Functional Salt Materials,Center for Advanced Materials Research,Zhongyuan University of Technology,Zhengzhou 450007,China)
出处 《化学学报》 SCIE CAS CSCD 北大核心 2020年第11期1255-1259,共5页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.21771071,51672093,21925104)资助.
关键词 硫银团簇 Ag14 结构异构 自组装 silver(I)-thiolate clusters Ag14 isomerization self-assembly
  • 相关文献

参考文献4

二级参考文献7

共引文献17

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部