期刊文献+

基于双目视觉的人形机器人物体定位与抓取 被引量:2

Object Location and Grasping of Humanoid Robot Based on Binocular Vision
下载PDF
导出
摘要 以人形机器人在非结构化的环境中识别、目标定位与实物抓取为基础,使用仿人机器人NAO,进行双目视觉模块扩展,对机器人手臂进行运动学建模、双目视觉标定、视觉识别与定位、视觉伺服控制等问题分析,并通过一系列实验验证了NAO机器人可以准确有效地完成目标物体识别、定位与抓取任务.对服务型机器人的应用与深度开发具有参考意义. Based on humanoid robot′s recognition,target positioning and object grasping in unstructured environment,the binocular vision module is expanded by using the humanoid robot Nao.The robot arm kinematics modeling,binocular vision calibration,visual recognition and positioning,visual servo control and other issues are analyzed,and the NAO is verified by a series of experiments.The robot can accurately and effectively complete the tasks of target recognition,positioning and grasping.It is of great reference to the application and deep development of service robots.
作者 姚晓莉 YAO Xiao-li(Chizhou Vocational and Technical College,Chizhou Anhui 247100,China)
出处 《兰州工业学院学报》 2020年第6期67-71,共5页 Journal of Lanzhou Institute of Technology
基金 安徽省级教学研究重点项目(2017jyxm0681,2019jyxm0648,2019jyxm0647) 安徽省级《VR创客虚拟仿真实验教学中心》阶段性成果(2017sxzx56) 安徽省级教师教学创新团队项目(2019cxtd045)。
关键词 NAO机器人 双目视觉 手眼标定 特征匹配 Nao robot binocular vision hand-eye calibration feature matching
  • 相关文献

参考文献1

二级参考文献13

  • 1LI Jing, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10-12):1771-1787.
  • 2Soyel H, Demirel H. Facial expression recognition based on discriminative scale invariant feature transform [J]. Electronics Letters, 2010, 46 (5): 343-345.
  • 3Psyllos A P, Anagnostopoulos C N E, Kayafas E. Vehicle logo recognition using a sift-based enhanced matching scheme[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11 (2):322-328.
  • 4LI Qiaoliang, WANG Guoyou, LIU Jianguo, et al. Robust scale-invariant feature matching for remote sensing image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (2): 287 291.
  • 5Rachel LOT W, Paul Siebert J. Local feature extraction and matching on range images: 2. 5D SIFT [J]. Computer Vision and Image Understanding, 2009, 113 (12): 1235-1250.
  • 6Delponte E, Isgro F, Odone F, et al. SVI~matching using SIFT features [J]. Graphical Models, 2006, 68 (5-6): 415-431.
  • 7GAO X, Sattar F, Venkateswarlu R. Multiscale corner detection of gray level Images based on log-gabor wavelet transform [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17 (7): 868-875.
  • 8BAY H, ESS A, Tuytelaar T, et al. Speeded-up robust features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110 (3):346-359.
  • 9DO M N, Vetterli M. The contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Transactions Image on Processing, 2005, 14 (12): 2091-2106.
  • 10DA Cunha A L, ZHOU Jianping, DO M N. The nonsubsampled eontourlet transform: Theory design and applications [J]. IEEE Transaction on Image Processing, 2006, 15 (10):3089-3101.

共引文献1

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部