期刊文献+

基于Fuzzy–CPG的双足机器人适应性行走控制 被引量:2

Adaptive walking control of biped robot based on Fuzzy-CPG
下载PDF
导出
摘要 为提高双足机器人的环境适应性,本文提出了一种基于模糊控制与中枢模式发生器(CPG)的混合控制策略,称之为Fuzzy–CPG算法.高层控制中枢串联模糊控制系统,将环境反馈信息映射为行走步态信息和CPG幅值参数.低层控制中枢CPG根据高层输出命令产生节律性信号,作为机器人的关节控制信号.通过机器人运动,获取环境信息并反馈给高层控制中枢,产生下一步的运动命令.在坡度和凹凸程度可变的仿真环境中进行混合控制策略的实验验证,结果表明,本文提出的Fuzzy–CPG控制方法可以使机器人根据环境的变化产生适应的行走步态,提高了双足机器人的环境适应性行走能力. To improve the walking adaptive ability of biped robot,a hybrid control strategy(Fuzzy-CPG)based on fuzzy control and central pattern generator(CPG)is proposed.The environmental feedback information is mapped into expected walking gait information of the robot and amplitude parameters of the CPG model through the high-level control center,series fuzzy control system.According to the output command of the high-level control center,rhythmic output signals controling the joint motion of the robot are generated by the low-level control center CPG.The robot detects the environment feedback information and feeds it back to the high-level control center,where further motion commands are generated to start a new cycle.In simulation environments with variable slope angles and unevenness,the hybrid control strategy is verified.The results show that the proposed hybrid control strategy(Fuzzy-CPG)can generate corresponding walking gaits according to the change of environment and improve the adaptive walking ability of biped robot.
作者 张雪 刘成菊 陈启军 ZHANG Xue;LIU Cheng-ju;CHEN Qi-jun(College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第12期2525-2534,共10页 Control Theory & Applications
基金 国家自然科学基金项目(61673300,U1713211) 浦东新区科技发展基金项目(PKX2019–R18)资助。
关键词 双足机器人 模糊控制 中枢模式发生器(CPG) 适应性行走 biped robot fuzzy control central pattern generator(CPG) adaptive walking
  • 相关文献

参考文献1

二级参考文献10

  • 1百度百科.蛇怪蜥蜴[EB/OL].(2013-03-19).http://baike.baidu.com/view/4003761.htm.
  • 2Song Y S, Sitti M. Surface-tension-driven biologically inspired water strider robots: Theory and experiments[J]. IEEE Transac- tions on Robotics, 2007, 23(3): 578-589.
  • 3Ozcan O, Wang H, Taylor J D, et al. Surface tension driven wa- ter strider robot using circular footpads[C]//IEEE Intemation-.
  • 4Floyd S, Keegan T, Palmisano J, et al. A novel water running robot inspired by basilisk lizards[C]//IEEE/RSJ Internation- al Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2006: 5430-5436.
  • 5Sugihara T, Nakamura Y, Inoue H. Realtime humanoid motion generation through ZMP manipulation based on inverted pen- dulum control[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2002: 1404-1409.
  • 6Or J. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot[J]. Neural Networks, 2010, 23(3): 452-460.
  • 7Matsuoka K. The dynamic model of binocular rivalry[J]. Bio- logical Cyberetics, 1983, 49(3): 201-208.
  • 8Tao C W, Taur J, Chang J H, et al. Adaptive fuzzy switched swing-up and sliding control for the double-pendulum-and-cart system[J]. IEEE Transactions on Systems, Man, and Cybernet- ics, Part B: Cybernetics, 2010, 40(1): 241-252.
  • 9阮晓钢,胡敬敏,蔡建羡,武卫霞.一种基于模糊控制理论的独轮机器人控制算法[J].控制与决策,2010,25(6):862-866. 被引量:15
  • 10连志鹏,吴立成,袁海斌.一种水上行走机器人的设计与实现[J].机器人,2010,32(4):449-453. 被引量:6

共引文献2

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部