期刊文献+

SiC/SiCf复合材料在高温高压水中腐蚀行为的原位拉曼光谱研究 被引量:1

In-Situ Raman Spectroscopy Investigation of Corrosion Behavior of SiC/SiCf Composite in High-temperature and High-pressure Water
下载PDF
导出
摘要 利用高温高压循环水腐蚀试验系统、原位观察高压釜以及拉曼光谱表征系统,针对SiC/SiCf复合材料开展了腐蚀试验以及原位拉曼光谱测量。水化学介质为含1 200mg/L H3BO3和2mg/L LiOH的混合水溶液。试验分为未控氧条件(O2≈2 688μg/L)和控氧条件(O2≈5μg/L)。结果表明:在500、590、715、785、805、870、915、960cm^(-1)附近位置出现拉曼光谱峰,分别来自于β-SiC基体及其表面生成的SiCxOy、SiO2、Si(OH)4等。未控氧条件下,表面氧化膜易转变成可溶于水的Si(OH)4,保护性差。控氧条件下,氧化膜可保持较好的稳定性,SiO2向Si(OH)4的转变得到有效抑制,提高了SiC/SiCf复合材料的耐蚀性。 Corrosion test and in-situ Raman spectroscopy measurement for SiC/SiCf composite were carried out using the established high temperature and high pressure circulating water corrosion test system,in-situ observation autoclave and Raman spectroscopy characterization system.The corrosion test environment was an aqueous solution containing 1200mg/L H3BO3+2 mg/L LiOH.Two series of corrosion experiments were conducted:in one experiment,the oxygen content in solution was not controlled(oxygen content≈2688μg/L);in the other experiment,the oxygen content in solution was controlled(oxygen content≈5μg/L).The results show that the Raman peaks were located near 500、590、715、785、805、870、915、960cm^-1,corresponding toβ-SiC matrix and its surface oxide films SiCxOy,SiO2,Si(OH)4 etc.,respectively.In the oxygen-saturated solution,surface films were prone to become Si(OH)4,which were not protective.In the oxygen-controlled solution,surface films were stable,and the transformation from SiO2 to Si(OH)4 were retarded.Therefore,the corrosion resistance of SiC/SiCf composite was improved.
作者 汪峰 李怀林 曹鑫源 兰雪影 WANG Feng;LI Huailin;CAO Xinyuan;LAN Xueying(Division of Nuclear Materials and Fuel,State Power Investment Corporation Research Institute,Beijing 102209,China)
出处 《腐蚀与防护》 CAS 北大核心 2020年第11期33-37,42,共6页 Corrosion & Protection
基金 国家电力投资集团有限公司资助项目(SPIC(2017)06-41-573)。
关键词 SiC/SiCf复合材料 原位拉曼光谱 高温高压水 腐蚀行为 SiC/SiCf composite in-situ Raman spectroscopy high temperature and high pressure water corrosion behavior
  • 相关文献

参考文献3

二级参考文献39

  • 1Snead L, Nozawa T, Katoh Y, et al. Handbook of SiC properties for fuel performance modeling[J]. J Nucl Mater, 2007,371:329.
  • 2Bloom E E. The challenge of developing structural materials for fusion power systems [J]. J Nucl Mater,1998,258-259: 7.
  • 3Hasegawa A, Kohyama A, Jones R H, et al. Critical issues and current status of SiC/SiC composites for fusion[J]. J Nucl Mater, 2000,283-287: 128.
  • 4Yueh K, Carpente D, Feinroth H. Clad in clay[J]. Nuet Eng Int,2010,55(666):14.
  • 5Videm K. Properties of zirconium base cladding materialscorrosion and hydrogen pickup[J]. Nucl Eng Des, 1972,21 (2):200.
  • 6Motta A T. Light-water reactor fuel degradation mechanisms at high bumup , Implication to generation N materials [C]/ / 2007 MRS Fall Meeting, Symposium T. Boston, 2008.
  • 7Hofmann P, Hagen S J L, Schanz G. Reactor core materials interaction at very high temperatures[J]. Nucl Techn, 1989, 87(D: 146.
  • 8Pickman D O. Design of fuel elements[J]. Nucl Eng Des, 1972,21(2) :303.
  • 9Northwood D 0, London I M, Bahen L E. Elastic-constants of zirconium alloys[J]. J Nucl Mater, 1975,55(3): 299.
  • 10Matsuo Y. Thermal creep of zircaloy-4 cladding under internal pressure[J]. J Nucl Sci Techn, 1987,24(2) : III.

共引文献30

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部