期刊文献+

基于小波包和支持向量机的滚动轴承故障诊断 被引量:12

Roller Bearing Fault Diagnosis Based on Wavelet Packet and Support Vector Machine
下载PDF
导出
摘要 为解决滚动轴承的振动信号非平稳特性和故障样本不足的问题,构建以小波包变换、能量特征向量和支持向量机为基础的故障诊断系统。小波包变换具有时域和频域局部化的优点,可有效分解滚动轴承的非平稳信号。能量特征向量能减少故障诊断系统的样本数据,提高计算效率。支持向量机解决了滚动轴承缺少故障样本数据的问题。实验证明,该诊断模型可有效识别滚动轴承的故障类型。 In order to solve the problem of non-stationary property of the vibration signal and the lack of fault samples of roller bearing,the fault diagnosis system was structured based on wavelet packet transform,energy feature vector and support vector machine.Wavelet packet transform has the advantage of time-frequency localization,can discompose the non-stationary signal of roller bearing effectively.Energy feature vector can reduce the sample data of fault diagnosis,increase the computation efficiency.Support vector machine can solve the problem of the lack of fault sample data of roller bearing.The experiment result indicates that this model can recognize the fault type of roller bearing effectively.
作者 涂志松 Tu Zhisong(Zhangzhou Branch,FuJian Special Equipment Inspection and Research Institute,Zhangzhou,Fujian 363000,China)
出处 《机电工程技术》 2020年第12期208-211,共4页 Mechanical & Electrical Engineering Technology
关键词 滚动轴承 故障诊断 小波包变换 支持向量机 roller bearing fault diagnosis wavelet packet transform support vector machine
  • 相关文献

参考文献4

二级参考文献29

  • 1时文刚,刘树林,张嘉钟,黄文虎.基于支持向量机的往复泵泵阀故障诊断方法[J].机械强度,2002,24(3):362-364. 被引量:32
  • 2于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:56
  • 3程军圣,于德介,杨宇.基于支持矢量回归机的Hilbert-Huang变换端点效应问题的处理方法[J].机械工程学报,2006,42(4):23-31. 被引量:75
  • 4刘勇 康立山 陈毓屏.非数值并行算法-遗传算法[M].北京:科学出版社,2000..
  • 5边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 6VLADIMIR N.Vapnik.统计学习理论[M].北京:电子工业出版社,2004.
  • 7Samanta B. Artificial neural networks and genetic algorithms for gear fault detection[J]. Mechanical System and Signal Processing, 2004, 18: 1273-1282.
  • 8Zhang L, Jack L B, Nandi A K. Fault detection using genetic programming[J]. Mechanical System and Signal Processing, 2005, 19: 271- 289.
  • 9Hermes L, Buhmann J M. Feature selection for support vector machines [ C]//Proceeding of 15th International Conference on Pattern Recognition. Barcelona, Spain: [s.n], 2000: 712-715.
  • 10Yang B S, Han T, Hwang W W. Fault diagnosis of rotating machinery based on multi-class support vector machines[J]. Journal of Mechanical Science and Technology, 2005, 19(3) : 846-859.

共引文献53

同被引文献90

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部