期刊文献+

基于数据挖掘与分析的学习成果定量实证研究

A Quantitative Empirical Study of Learning Effeect Based on Data Mining and Analysis
下载PDF
导出
摘要 采用雨课堂数据挖掘、数据分析以及SPSS21.0统计学软件,进行了学生的作业完成分数、学习资料以及公告阅读数量对学习成果的定量实证研究。研究结果表明:不同类型的课后作业对学习成果的贡献程度不同:平时作业以无标准答案、具有一定挑战度的开放题型给出时,其开放题与学习成果基本不相关或呈弱相关;平时作业以深度学习为特点的主观题形式给出时,其主观题得分与学习成果呈强相关。学生预习多媒体课件等学习资料的阅读数量越多、阅读时间越长,学生的学习成果越显著。学生阅读公告数量的多少与学习成果呈显著正相关。 A quantitative empirical study was made of the correlation between factors such as students'homework score,learning material and the amount of announcements they read and learning effect by means of Rain Classroom's data mining and analysis technology as well as SPSS21.0.The result shows that the contribution of different types of after-school homework to learning effect is different,that is,the homework composed of challenging open problems without standard reference answers is not correlated or weakly correlated with learning effect,whereas the homework composed of subjective problems featuring deep learning shows strong correlation with learning effect.Additionally,the more materials like multimedia courseware students read and the longer they spend on them,the better their learning effect.And the number of announcements read by students is also significantly positively correlated with learning effect.
作者 黄根哲 伊向超 HUANG Gen-zhe;YI Xiang-chao(Changchun University of Science and Technology, Changchun Jilin 130022, China)
机构地区 长春理工大学
出处 《吉林工程技术师范学院学报》 2020年第11期31-34,共4页 Journal of Jilin Engineering Normal University
基金 吉林省高校“金课”A类工程材料课程建设项目(201923)。
关键词 数据挖掘 SPSS21.0统计学软件 学习成果 智慧教学工具 Pearson相关性 Data Mining SPSS21.0 Statistical Software Learning Effect Smart Teaching Tool Pearson Correlation
  • 相关文献

参考文献5

二级参考文献37

  • 1熊平.数据挖掘算法与Clementine[M].北京:清华大学出版社,2011:1-237.
  • 2薛薇.SPSS统计分析方法及应用[M].北京:电子工业出版社,2013.
  • 3第33次中国互联网络发展状况统计报告[EB/DL].http://www.cnnic.cn/gywm/xwzx/rdxw/2014/20140l/t20140116_43823.htm.
  • 4教育部关于印发《教育信息化十年发展规划(2011-2020年)》的通知.[EB/DL].[2012-3-30]http://www.gov.cn/gzdt/2012-03/30/content2103672.htm.
  • 5刘惠如.整合式网路教学之教学设计与评量[D].台湾:国立中山大学资讯管理研究所,2000.
  • 6杨奕晨,柴蕙质.非同步网路学习成效及影响因素之计量分析[C].台湾:非同步网路教学课程中心建置研讨会,2000.
  • 7J.MichaelSpector,M.DavidMerrill,JeroenvanMerrienboer,MarcyP.Driscoll.教育传播与技术研究手册[M].任友群,焦建利,刘美凤,等主译.上海:华东师范大学出版社.2012.
  • 8Moore, M.. Three Types of Interaction[J]. The American Journal of Distance Education, 1989, (2) : 1-6.
  • 9Shapiro, A. M. and Niederhauser, D.. Learning from Hypertext:Research Issues and Findings [A]. In Handbook of Research on Educational Communications and Technology[C]. Mahwah, N J: Lawrence Erlbaum Associates, 2004.
  • 10BALAKRISHNAN G. Predicting student retention in massive open online courses using hidden markov models, UCB/EECS-2013-109 [ R/OL ].Berkeley:University of California, Berkeley, 2013.

共引文献244

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部