摘要
通过水热前驱体中的功能添加剂调控一维(1D)纳米棒阵列疏密度,继而在纳米棒间隙沉积零维(0D)纳米颗粒,制备1D/0D有序的复合SnO2电子传输层(ETL),并组装高效、稳定的钙钛矿太阳能电池。系统研究前驱体中NaCl添加剂以及后续纳米颗粒的沉积对复合ETL的形貌结构、光谱性能及界面电荷过程的作用规律,探讨上述作用对电池光电性能的影响机制。前驱体中NaCl的加入使棒密度变小,从而使0D纳米颗粒顺利渗透到1D纳米棒间隙中,其对钙钛矿/ETL和钙钛矿/FTO界面复合的抑制作用是造成器件开路电压和填充因子增大的原因。在经2 mL饱和NaCl水溶液改性的1D电子传输层ETL-2Cl的基础上,继续沉积0D的纳米颗粒,制备得到新型1D/0D复合电子传输层ETL-2P,后者优良的电荷复合抑制作用(复合电阻是ETL-2Cl的2.9倍)和高效的电子抽提性能(抽提速率3.03×10^7 s^-1,抽提效率91.6%)促成了电池较优的光电性能(光电效率12.15%)。
Novel 1D/0D ordered composite SnO2 nanocrystal electron transport layer(ETL)for pervoskite solar cells has been prepared by adjusting the density of one-dimensional(1D)nanorod arrays through adding functional additives in hydrothermal precursors,followed by depositing zero-dimensional(0D)nanoparticles between the nanorods.The effect of the NaCl additives in the precursor and the subsequent deposition of nanoparticles on the morphology,optical and interfacial charge transfer properties of the composite ETL was systematically studied,and the mechanism of the above effects on the photovoltaic performance of the device was discussed.The results show that the addition of NaCl in the precursor thins the rods'density,so that the following 0D nanoparticles penetrated smoothly into the gaps of 1D nanorods,inducing the obvious inhibitory effect on the perovskite/ETL and perovskite/FTO interface charge recombination,which is the direct reason for the increase in open circuit voltage and fill factor of the device.In summary,the excellent charge recombination inhibition(composite resistance was 2.9 times that of conventional 1D nanorod arrays ETL-2Cl)and efficient electron extraction performance(extraction rate and efficiency were 3.03×10^7 s^-1 and 91.6%,respectively)of the novel 1D/0D ordered composite ETL-2P contributed to the better photoelectric performance of the device(with photoelectric efficiency of 12.15%).
作者
刘德政
杨高元
向文灏
王松
李望南
钟杰
黄福志
陈美华
梁桂杰
LIU De-Zheng;YANG Gao-Yuan;XIANG Wen-Hao;WANG Song;LI Wang-Nan;ZHONG Jie;HUANG Fu-Zhi;CHEN Mei-Hua;LIANG Gui-Jie(Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices,Hubei University of Arts and Science,Xiangyang,Hubei 441053,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China)
出处
《无机化学学报》
SCIE
CAS
CSCD
北大核心
2021年第1期85-94,共10页
Chinese Journal of Inorganic Chemistry
基金
国家自然科学基金(No.11705277)
湖北省自然科学基金(No.2020CFB700)
湖北文理学院学科开放基金(No.XK2020041)资助。