摘要
对比了立管式间接蒸发冷却器与卧管式间接蒸发冷却器的设计模型的差异,基于间接蒸发冷却器热质交换的能量方程,优化了立管式间接蒸发冷却器的计算模型,测试了立管式间接蒸发冷却器的冷却性能,测试高温工况的湿球效率为75%~83%;测试中等温度工况的湿球效率为78%~88%。并结合测试数据,预测了蒸发冷却复合机械制冷的空调机组在典型城市数据中心全年适用小时数,在敦煌,干模式运行5404 h(占全年运行小时数的61.7%),湿模式运行3182 h(占全年运行小时数的36.3%),混合模式运行174 h(占全年运行小时数的2%);在西安,干模式运行4469 h(占全年运行小时数的51%),湿模式运行2140 h(占全年运行小时数的24.4%),混合模式运行2151 h(占全年运行小时数的24.6%)。
The differences between the design models of vertical tube indirect evaporative cooler and horizontal tube indirect evaporative cooler were compared.Based on the energy equation of heat transfer and mass transfer in the indirect evaporative cooler,the calculation model of the vertical tube indirect evaporative cooler was optimized,the cooling performance of the vertical tube indirect evaporative cooler was tested,and the wet-bulb efficiency under high-temperature conditions was 75%~83%;The wet-ball efficiency was 78%~88%at medium temperature.And based on the test data,the annual application hours of air conditioning units with combined evaporative cooling and mechanical refrigeration in typical urban data centers were predicted.In Dunhuang,the air conditioning units will operate for 5404 h in dry mode(accounting for 61.7%of annual operation hours),and will operate for 3182 h in wet mode(accounting for 36.3%of annual operation hours),and will operate for 174 h in mixed mode(accounting for 2%of annual operation hours).In Xi'an,the air conditioning units will operate for 4469h in dry mode(51%of annual operation hours),will operate for 2140 h in wet mode(accounting for 24.4%of annual operation hours),and will operate for 2151 h in mixed mode(accounting for 24.6%of annual operation hours).
作者
常健佩
黄翔
贾晨昱
杜冬阳
许晶晶
Chang Jianpei;Huang Xiang;Jia Chenyu;Du Dongyang;Xu Jingjing(School of Urban Planning and Municipal Engineering,Xi'an Polytechnic University,Xi'an 710048,China;China Qiyuan Engineering Corporation,Xi'an 710018,China)
出处
《流体机械》
CSCD
北大核心
2020年第12期68-73,共6页
Fluid Machinery
基金
“十三五”国家重点研发计划项目(2016YFC0700404)。
关键词
卧管式间接蒸发冷却器
立管式间接蒸发冷却器
传热系数
湿球效率
适用性
horizontal tube indirect evaporative cooler
vertical tube indirect evaporative cooler
heat transfer coefficient
wet-bulb efficiency
applicability