期刊文献+

基于稀疏度阶数优化的杂波密度估计算法 被引量:1

A clutter density estimation algorithm by optimized sparsity order
原文传递
导出
摘要 针对杂波分布不均匀且密度未知的多目标跟踪问题,提出一种基于稀疏度阶数优化的杂波密度估计算法.首先,剔除在跟踪门内的潜在目标测量,获取杂波测量集;其次,从杂波测量集中构造"稀疏度阶数-超立方体容积"的样本,并利用支持向量回归机对样本拟合;再次,通过梯度法求得拟合曲线的极值点,实现稀疏度阶数在线优化;最后,将优化后的杂波稀疏度估计器嵌入高斯混合概率假设密度滤波器中,实现复杂杂波环境下目标状态与杂波密度联合估计.仿真结果验证了所提出算法的有效性. In order to address the problem of multi-target tracking by nonuniform clutter spatial distribution and unknown density,a clutter density estimator based on sparsity order optimization is proposed.Firstly,the clutter set is obtained by eliminating the potential target-originated measurements that fall within the validation gate.Then,the samples of"sparsity order-hypercube volume"are constructed from the clutter set and the corresponding fitting function is established by the support vector regression machine.Furthmore,the sparsity order is optimized online by finding the mininum using the gradient method.Finally,the clutter sparsity estimator is combined by the Gaussian mixture probability hypothesis density to estimate the clutter density and target state in complicated backgroud simultaneously.Simulation results show the effectiveness of the proposed algorithm.
作者 郭云飞 钱恒泽 GUO Yun-fei;QIAN Heng-ze(Automation School,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第12期2923-2930,共8页 Control and Decision
基金 浙江省自然科学基金重点项目(LZ20F010002) 国家自然科学基金项目(61871166)。
关键词 杂波密度估计 多目标跟踪 稀疏度阶数优化 概率假设密度 支持向量回归机 梯度法 clutter density estimation multi-target tracking sparsity order optimization probability hypothesis density support vector regression machine gradient
  • 相关文献

参考文献4

二级参考文献33

  • 1朱家兵,陶亮,许得刚,洪一.基于非合作照射源的无源雷达直达波抑制技术[J].雷达与对抗,2006,26(1):4-8. 被引量:9
  • 2焦培南,杨龙泉,凡俊梅.短波天波反射/地波绕射组合新传播模式及其可能应用[J].电波科学学报,2007,22(5):746-750. 被引量:21
  • 3Mahler R.Multi-target Bayes filtering via first-order Multi-target moments[J].IEEE Trans on Aerospace and Electronic Systems,2003,16(2): 1152-1178.
  • 4Mahler R.Statistical multisource multitarget information fusion[M].Norwood,MA: Artech House,2007: 587-595.
  • 5Lian F,Han C Z,Liu W F.Estimating unknown clutter intensity for PHD filter[J].IEEE Trans on Aerospace and Electronic Systems,2010,46(4): 2066-2078.
  • 6Mahler R,Vo B T,Vo B N.CPHD filtering with unknown clutter rate and detection profile[J].IEEE Trans on Signal Processing,2011,59(8): 3497-3513.
  • 7Vo B N,Ma W K.The Gaussian mixture probability hypothesis density filter[J].IEEE Trans on Signal Processing,2006,54(11): 4091-4104.
  • 8Vo B N,Singh S,Doucet A.Sequential Monte carlo methods for multi-target filtering with random finite sets[J].IEEE Trans on Aerospace and Electronic Systems,2005,41(4): 1224-1245.
  • 9Kalyan B,Balasuriya A,Wijesoma S.Multiple targets tracking in underwater sonar images using particle-PHD filter[C].The 16th IEEE Int Conf on ISAF.Singapore,2006: 1-5.
  • 10Bartfai P,Tomko J.Point processes and queuing problems[M].NorthHolland: Amsterdam,1981: 285-294.

共引文献41

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部