摘要
本文研究一类实平面二次多项式微分系统时间可逆性与中心的问题,得到此系统关于线性对合时间可逆的充要条件.此条件保证系统在原点处是一个关于直线对称的中心.
In this paper,the relationship between time-reversibility and the center of a planar quadratic polynomial system in R~2 is considered.The necessary and sufficient conditions for the system to be time-reversible w.r.t.a linear involution are obtained.These conditions guarantee that the system has a center at the origin which is symmetric w.r.t.a straight line.
作者
杨静
杨鸣
陆征一
YANG Jing;YANG Ming;LU Zhengyi(Chengdu Institute of Computer Application,Chinese Academy of Sciences,Chengdu 610041,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Mathematical Sciences,Sichuan Normal University,Chengdu 610068,China)
出处
《应用数学》
CSCD
北大核心
2021年第1期37-46,共10页
Mathematica Applicata
基金
Supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20115134110001)。
关键词
多项式微分系统
时间可逆性
线性对合
中心
Polynomial differential system
Time-reversibility
Linear involution
Center