摘要
本文研究一类右边不连续的不相称适型分数阶系统(DICFS).首先,得到DICFS系统的Filippov解存在性.之后,构建适合DICFS系统的比较原理.再者,通过使用特征值和Lyapunov理论思想,得到脉冲控制实现DICFS系统分数阶指数稳定的两个定理.最后,举一例阐述主要结论的应用性.
In this paper,one class of the incommensurate conformable fractional order system with discontinuous right side(DICFS) is studied.Firstly,the existence of the Filippov solution for the incommensurate conformable fractional order discontinuous system is obtained.Secondly,the comparison theorem is constructed for the incommensurate fractional discontinuous system.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,one example is given to illustrate applications of main results.
作者
高扬
GAO Yang(Department of Teaching Education,Daqing Normal University,Daqing 163712,China)
出处
《应用数学》
CSCD
北大核心
2021年第1期204-215,共12页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of HeiLongJiang Province (HL2020A017)。
关键词
分数阶指数稳定
Filippov解
脉冲系统
适型分数阶导数
Fractionally exponentially stable
Filippov solution
Impulsive control
Conformable fractional-order derivative