期刊文献+

一类右边不连续的不相称适型分数阶系统的脉冲控制

Impulsive Control for One Class of the Incommensurate Conformable Fractional Order System with Discontinuous Right Side
下载PDF
导出
摘要 本文研究一类右边不连续的不相称适型分数阶系统(DICFS).首先,得到DICFS系统的Filippov解存在性.之后,构建适合DICFS系统的比较原理.再者,通过使用特征值和Lyapunov理论思想,得到脉冲控制实现DICFS系统分数阶指数稳定的两个定理.最后,举一例阐述主要结论的应用性. In this paper,one class of the incommensurate conformable fractional order system with discontinuous right side(DICFS) is studied.Firstly,the existence of the Filippov solution for the incommensurate conformable fractional order discontinuous system is obtained.Secondly,the comparison theorem is constructed for the incommensurate fractional discontinuous system.Moreover,by using the method of the eigenvalue and Lyapunov theory,two theorems that the incommensurate conformable fractional order discontinuous system is fractionally exponentially stable by impulsive control are derived.Finally,one example is given to illustrate applications of main results.
作者 高扬 GAO Yang(Department of Teaching Education,Daqing Normal University,Daqing 163712,China)
出处 《应用数学》 CSCD 北大核心 2021年第1期204-215,共12页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of HeiLongJiang Province (HL2020A017)。
关键词 分数阶指数稳定 Filippov解 脉冲系统 适型分数阶导数 Fractionally exponentially stable Filippov solution Impulsive control Conformable fractional-order derivative
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部