摘要
基于参数化的观点,软集理论为分析和处理不确定信息提供一个新的数学框架,现已被广泛应用于代数学、非经典逻辑、博弈论、决策分析和数据挖掘等诸多领域。该研究介绍了软集及其扩展结构的相关基础理论,分析总结软集在决策分析和数据挖掘中的研究进展及重要成果,对未来研究的方向和趋势进行展望。
Based on the perspective of parameterization,soft set theory provides a new mathematical framework for analyzing and handling uncertain information and has been extensively applied to algebra,nonclassical logic,game theory,decision analysis,data mining and other fields.The rudiments of soft sets and their extensions are introduced.The research progress and significant achievements of soft sets in decision analysis and data mining are analyzed and summarized.Some directions and trends for future research are also prospected.
作者
冯锋
郑玉娟
王谦
FENG Feng;ZHENG Yujuan;WANG Qian(School of Science,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处
《西安邮电大学学报》
2020年第4期8-18,共11页
Journal of Xi’an University of Posts and Telecommunications
基金
陕西省自然科学基础研究计划项目(2018JM1054)。
关键词
软集
不确定性
决策分析
数据挖掘
soft set
uncertainty
decision analysis
data mining