期刊文献+

群体异常行为分析中面临的挑战与相关技术 被引量:1

Challenges and relevant techniques in crowd abnormal behavior analysis
下载PDF
导出
摘要 群体异常行为的分析与识别过程在技术层面通常面临与个体行为分析不同的挑战,如群体行为类型的定义不明确、用于群体行为分析的数据不足以及对多种类型群体行为检测难度较高等问题。针对群体行为分析的3个阶段所面临的主要问题,对群体行为数据模拟、群体行为图像特征提取和群体异常行为识别相关的研究进行了相关的归纳与介绍。其中,群体行为数据模拟方面,主要介绍不同研究中对群体行为的分类定义,以及宏观、介观和微观方式群体行为模拟的相关研究。其次,对多个研究中使用的群体行为图像特征提取方法,按照低级别运动流的特征到高级别语义特征的顺序进行介绍。最后,分别归纳群体能量模型等基于全局的群体行为识别方法,以及社会力模型等基于局部的群体行为识别方法相关研究,对比其优势及缺陷,并对群体异常行为分析与识别领域可能的研究方向进行展望。 The analysis and recognition process for crowd abnormal behaviors usually encounter different technical challenges from those for individual behaviors,such as the implicitly of crowd behavior taxonomy,insufficient video data for analysis,difficulties on detection of multiple crowd behavior types.Based on the primary issues to be tackled on the three phases of crowd behavior analysis,the state-of-the-art research works of crowd behavior synthesis,video pattern extraction and crowd abnormal behavior recognition are summarised and reviewed.For the crowd behavior synthesis,the taxonomies of crowd behavior types in different criteria are introduced and the macroscopic,mesoscopic and microscopic crowd synthesis approaches are reviewed.For the crowd video pattern extraction,research works are reviewed from the low-level flow-based patterns to the high-level sematic patterns.Finally,the global crowd behavior recognition approaches such as crowd energy model,and local approaches such as social force model are reviewed respectively.The pro and cons of these approaches are compared,and the future direction is prospected as well.
作者 郝羽 刘颖 范九伦 许志杰 HAO Yu;LIU Ying;FAN Jiulun;XU Zhijie(School of Communications and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;School of Computing and Engineering,University of Huddersfield,Huddersfiled HD1-3DH,UK)
出处 《西安邮电大学学报》 2020年第4期60-72,共13页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金项目(61671377) 陕西省重点研发计划项目(2019GY-54) 咸阳市科技局项目(2017k-01-25-5)。
关键词 群体异常行为分析 群体模拟 特征提取 行为识别 crowd abnormal behavior analysis crowd synthesis pattern extraction behavior recognition
  • 相关文献

参考文献3

二级参考文献36

  • 1ZHAO Tao, NEVATIA R. Tracking Multiple Humans in Crowded Environment[C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004): June 27-July 2, 2004. San Diego, CA, USA. IEEE Press, 2004, 2: 11-406-11 413.
  • 2KHAN Z, BALCH T R, DELLAERT F. An MCMCBased Particle Filter for Tracking Multiple Interacting Targets[C]// Proceedings of the 8th European Conference on Computer Vision: May 11-14, 2004. Prague, Czech Republic. Springer, 2004: 279-290.
  • 3HUE C, LE C J, PEREZ P. Posterior Cramer-Rae Bounds for Multi-Target Tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(1): 37-49.
  • 4BROSTOW G J, CIPOLLA R. Unsupervised Bayesian Detection of Independent Motion in Crowds[C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: June 17-22, 2006. New York, NY, USA. IEEE Press, 2006: 594-601.
  • 5SUGIMURA D, KITANI K M, OKABE T, et al. Using Individuality to Track Individuals: Clustering Individual Trajectories in Crowds Using Local Appearance and Frequency Trait[C]// Proceedings of IEEE 12th International Conference on Computer Vision: September 27- October 4, 2009. Kyoto, Japan. IEEE Press, 2009: 1467-1474.
  • 6ALI S, SHAH M. A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis[C]// Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE: June 18-23, 2007. Minneapolis, Minnesota, USA. IEEE Computer Society, 2007: 1-6.
  • 7ALI S, SHAH M. Floor Fields for Tracking in High Density Crowd Scenes[C]// Proceedings of the 10th European Conference on Computer Vision: October 12-18, 2008. Marseille, France. Springer, 2008: 1-14.
  • 8ALI S. Taming Crowded Visual Scenes[D]. Or- lando, Florida, USA: Ph.D. thesis, University of Central Florida, 2010.
  • 9RODRIGUEZ M, All S, KANADE T. Tracking in Unstructured Crowded Scenes[C]// Proceedings of IEEE 12th International Conference on Computer Vision: September 27 -October 4, 2009. Kyoto, Japan. IEEE Press, 2009: 1389-1396.
  • 10SALEEMI I, SHAFIQUE K, SHSH M. Probabilistic Modeling of Scene Dynamics for Applications in Visual Surveiliance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(8): 1472-148S.

共引文献4

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部