期刊文献+

广告智能化研究的知识图谱 被引量:5

Knowledge Graph of Advertising Intelligence Research
下载PDF
导出
摘要 随着人工智能技术在广告行业的应用和发展,业界和学界对于广告发展的分析单元不断细化。利用基于知识图谱的文献计量可视化分析方法对国内外研究文献进行梳理,可以进一步分析广告智能化研究在行业热点、学术前沿、话题聚类等维度的共同点与差异点。研究发现,计算广告、视频智能广告、新媒体融合这三个领域的研究是目前国内外的研究热点并有进一步发展趋势。然而三者在研究对象和研究方法上存在一定的差异性,值得借鉴互补。研究结果表明:计算广告学的发展应进一步注入人文因素,考虑环境和受众的复杂性和多样性;视频智能广告研究和发展的核心应从精准化的动态图像识别和实时匹配两方面进行深入研究;新媒体的融合在研究方法上更加注重创新利用算法和模型构建对非结构化文本进行量化分析。三个研究领域的发展将进一步促进计算广告学的理论发展和学科构建。 With the application and development of artificial intelligence technology in the advertising industry,the industry and academia have continuously refined the analysis units of advertising development.The literature measurement visualization analysis method based on the knowledge graph is used to sort out domestic and foreign research literature,analyze the common points and differences of domestic and foreign advertising intelligence research in the dimensions of industry hotspots,academic frontiers,topic clustering and etc.The research reveals that the researches in the three fields of computational advertising,video intelligent advertising,and new media integration are the current research hotspots at home and abroad and they have a trend of further development.However,there are certain differences in research objects and research methods of the three,which are worth learning and complementing.The research results show that the development of computational advertising should be further injected with human factors,and the complexity and diversity of the environment and audiences should be considered.The core of the research and development of video intelligent advertising should be in-depth research from two aspects:precise dynamic image recognition and real-time matching.The research method of integrated new media pays more attention to the innovative use of algorithms and model construction to quantitatively analyze unstructured text.The development of the three research fields will further promote the theoretical development and discipline construction of computational advertising.
作者 段淳林 崔钰婷 Duan Chunlin;Cui Yuting(South China University of Technology)
出处 《新闻与传播评论》 CSSCI 2021年第1期56-67,共12页 Journalism & Communication Review
基金 广东高校哲学社会科学重点实验室项目(2013WSYS0002) 广州市哲学社会科学规划一般课题(x2xcN5200340)。
关键词 知识图谱 广告智能化研究 计算广告 视频智能广告 新媒体 knowledge map research on intelligence of advertisement computational advertising intelligent video advertising new media
  • 相关文献

参考文献12

二级参考文献59

  • 1王飞跃.人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J].复杂系统与复杂性科学,2004,1(4):25-35. 被引量:234
  • 2刘海龙.一篇存在争议的传播学奠基文献[J].国际新闻界,2009,31(2):9-14. 被引量:15
  • 3刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 4GOTTIPATI S, JIANG J. Linking entities to a knowledge base with query expansion [C]// EMNLP'11: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2011: 804- 813.
  • 5CASTELLS P, FERNANDEZ M, VALLET D. An adaptation of the vector-space model for ontology-based information retrieval [J]. IEEE transactions on knowledge and data engineering, 2007, 19(2): 261-272.
  • 6CARPINETO C, ROMANO G. A survey of automatic query expansion in information retrieval [J]. ACM computing surveys, 2012, 44(1): 1-56.
  • 7HOFMANN T. Learning the similarity of documents: an information-geometric approach to document retrieval and categorization [C]// Proceedings of the 1999 Conference on Advances in Neural Information Processing Systems 12. Cambridge, MA: MIT Press, 1999: 914-920.
  • 8HOFFMAN M, BACH F, BLEI D M. Online learning for latent Dirichlet allocation[C]// Proceedings of the Conference on Advances in Neural Information Processing Systems 22. Cambridge, MA: MIT Press, 2010: 856-864.
  • 9SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions [C]// Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2011: 151-161.
  • 10SVORE K M, BURGES C J C. A machine learning approach for improved BM25 retrieval [C]// Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM, 2009: 1811-1814.

共引文献1123

同被引文献86

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部