期刊文献+

融合社交关系和标签信息的混合新闻推荐算法 被引量:5

Hybrid news recommendation algorithm combining social relation and tag information
下载PDF
导出
摘要 针对传统新闻推荐的数据稀疏性和用户的兴趣爱好快速变化问题,提出了一种融合社交关系和标签信息的混合新闻推荐算法。首先,该算法充分利用社交网络中的社交关系和标签信息;然后使用概率主题模型(latent Dirichlet allocation,LDA)对用户兴趣进行建模;最后采用基于内容与协同过滤相结合的混合推荐算法来完成新闻推荐。实验结果表明,所提算法与已有的推荐算法相比较,在精确度上提升了10.7%、平均倒数排名上(mean reciprocal rank,MRR)提升了4.1%,在归一化折损累计增益(normalized discounted cumulative gain,NDCG)上提升了10%。该算法可在一定程度上提高新闻推荐算法的精度及推荐质量。 Concerning the problem that data sparsity and user preferences quickly change for traditional news recommendation,this paper proposed a hybrid news recommendation algorithm combining social relations and tag information.Firstly,the algorithm utilized the social relationship and hashtag information in the user′s social network.Then it applied the LDA topic mo-del to model user interest.Finally,the algorithm used a hybrid recommendation algorithm based on content and collaborative filtering to complete news recommendations.In the experiments,comparing with existing recommendation algorithms,the proposed algorithm can improve the precision by 10.7%,MRR by 4.1%,NDCG by 10%.The proposed algorithm can improve the accuracy and the quality of news recommendation algorithm effectively.
作者 夏鸿斌 刘春芹 刘渊 Xia Hongbin;Liu Chunqin;Liu Yuan(School of Digital Media,Jiangnan University,Wuxi Jiangsu 214122,China;Jiangsu Key Laboratory of Media Design&Software Technology,Wuxi Jiangsu 214122,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第1期61-64,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61672264) 国家科学支撑计划课题(2015BAH54F01)。
关键词 新闻推荐 混合推荐 社交关系 用户标签 news recommendations hybrid recommendation algorithm social relation hashtag
  • 相关文献

参考文献5

二级参考文献40

  • 1JIANG S, HONG W X. A vertical news recommendation system: CCNS——an example from Chinese campus news reading system[C]//ICCSE 2014: Proceedings of the 2014 9th International Conference on Computer Science & Education. Piscataway, NJ: IEEE, 2014: 1105-1114.
  • 2DAS A S, DATAR M, GARG A, et al. Google news personalization: scalable online collaborative filtering[C]//WWW '07: Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 271-280.
  • 3GARCIN F, ZHOU K, FALTINGS B, et al. Personalized news recommendation based on collaborative filtering[C]//WI-IAT '12: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology. Washington, DC: IEEE Computer Society, 2012, 1: 437-441.
  • 4WU X D, XIE F, WU G Q, et al. Personalized news filtering and summarization on the Web[C]//ICTAI 2011: Proceedings of the 2011 23rd IEEE International Conference on Tools with Artificial Intelligence. Washington, DC: IEEE Computer Society, 2011: 414-421.
  • 5LI L, CHU W, LANGFORD J, et al. A contextual-bandit approach to personalized news article recommendation[C]//WWW '10: Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 661-670.
  • 6ADNAN M N M, CHOWDURY M R, TAZ I, et al. Content based news recommendation system based on fuzzy logic[C]//ICIEV 2014: Proceedings of the 2014 International Conference on Informatics, Electronics & Vision. Washington, DC: IEEE Computer Society, 2014: 1-6.
  • 7LIU J, DOLAN P, PEDERSEN E R. Personalized news recommendation based on click behavior[C]//IUI '10: Proceedings of the 15th International Conference on Intelligent User Interfaces. New York: ACM, 2010: 31-40.
  • 8JONNALAGEDDA N, GAUCH S. Personalized news recommendation using Twitter[C]//WI-IAT 2013: Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies. Washington, DC: IEEE Computer Society, 2013, 3: 21-25.
  • 9LEE W-J, OH K-J, LIM C-G, et al. User profile extraction from Twitter for personalized news recommendation[C]//ICACT 2014: Proceedings of the 2014 16th International Conference on Advanced Communication Technology. Washington, DC: IEEE Computer Society, 2014: 779-783.
  • 10ZUO Y C, YOU F, WANG J M, et al. User modeling driven news filtering algorithm for microblog service in China[C]//ICIS '12: Proceedings of the 2012 IEEE/ACIS 11th International Conference on Computer and Information Science. Washington, DC: IEEE Computer Society, 2012: 393-399.

共引文献132

同被引文献31

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部