摘要
针对目前行人重识别出现网络模型复杂化、识别率低的问题,提出一种基于全局特征拼接的行人重识别算法。首先利用卷积神经网络(CNN)提取全局特征;然后把不同卷积层提取的特征进行拼接,使特征信息互补;最后将拼接后的特征再次进行卷积处理,获得高表征能力的特征。网络训练时,采用聚类损失函数和标签平滑损失函数联合训练,同时引入了随机擦除和减小池化步长的训练技巧。在Market1501、DukeMTMC-reID、CUHK03和MSMT17数据集上进行了实验验证,实验表明所提算法具有良好性能,其中在Market1501上,Rank-1、mAP分别达到了95.9%和94.6%。
In order to solve the problems of network model complexity and low identification rate,this paper proposed a person re-identification(ReID)method based on global feature stitching.Firstly,it extracted the global features using convolutional neural network(CNN).Secondly,it stitched the features from different convolution layers together to complement the feature information.Finally,it convoluted again to obtain the features with high representation ability.In network training stage,it combined the cluster loss with label smoothing loss,and adopted random erasing augmentation(REA)as well as pooling step reduction techniques.It conducted extensive experiments to evaluate the performance of this proposed method on Market1501,DukeMTMC-reID,CUHK03 and MSMT17 benchmark datasets.Results show that the proposed method outperforms other state-of-the-art techniques,for instance,the Rank-1 and mAP on Market1501 are 95.9%and 94.6%,respectively.
作者
熊炜
杨荻椿
熊子婕
童磊
李利荣
王娟
Xiong Wei;Yang Dichun;Xiong Zijie;Tong Lei;Li Lirong;Wang Juan(School of Electrical&Electronic Engineering,Hubei University of Technology,Wuhan 430068,China;Dept.of Computer Science&Engineering,University of South Carolina,Columbia SC 29201,USA)
出处
《计算机应用研究》
CSCD
北大核心
2021年第1期316-320,共5页
Application Research of Computers
基金
国家留学基金资助项目(201808420418)
国家自然科学基金资助项目(61571182,61601177)
湖北省自然科学基金资助项目(2019CFB530)。
关键词
行人重识别
全局特征拼接
聚类损失
标签平滑损失
person re-identification(ReID)
global feature stitching
cluster loss
label smoothing loss