期刊文献+

基于渐进结构感受野和全局注意力的显著性检测 被引量:2

Saliency Detection by Progressive Structural Receptive Field andGlobal Attention
下载PDF
导出
摘要 当前的显著性检测算法在复杂场景下难以分割出完整显著性区域以及锐利的边缘细节。针对这一问题,文中提出了一种新颖的特征融合算法。该方法利用全卷积神经网络获取多个层次粗糙的初始特征并结合特征金字塔结构对其深度解析。设计渐进结构感受野模块将特征转换至不同尺度的空间进行优化,实现特征的渐进融合与传递,有选择性地增强显著性区域。采用全局注意力机制消除背景噪声并建立显著性像素之间的长距离依赖,以提高显著性区域的有效性,突出显著性目标,再通过学习融合个层次特征得到显著图。综合实验表明,在绝对误差减小的情况下,F-measure指标远超出其他7种主流方法。所提的显著性模型综合了全卷积神经网络和特征金字塔结构的优点,结合文中设计的渐进结构感受野和全局注意力机制,使得显著图更接近真值图。 In view of the current deficiencies that the previous saliency detection algorithms are difficult to segment the complete salient region and sharp edge details in complex scenes,a novel feature fusion of saliency detection model is proposed in this paper.The proposed algorithm utilizes full convolution neural network to obtain the initial features of multi-level roughness and combines the feature pyramid structure to analyze its depth.In order to realize the gradual fusion and transmission of features,the progressive structural receptive field module is designed to transform features to different scales of space for optimization.The global attention mechanism is used to eliminate the background noise and establish the long-distance dependence between the saliency pixels,so as to improve the effectiveness of the saliency region,highlight the saliency region,and then obtains the saliency map by learning and fusing the hierarchical features.The comprehensive experiment show that the F-measure index is far beyond the other seven mainstream methods when the absolute error is reduced.The proposed saliency model combines the advantages of full convolution neural network and feature pyramid structure,and combines the gradual structure receptive field and global attention mechanism designed in this study to make the saliency map closer to the truth map.
作者 董波 周燕 王永雄 DONG Bo;ZHOU Yan;WANG Yongxiong(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《电子科技》 2021年第1期23-30,共8页 Electronic Science and Technology
基金 国家自然科学基金(61673276)。
关键词 显著性检测 全卷积神经网络 特征金字塔 渐进结构感受野 全局注意力 F-measure指标 saliency detection fully convolutional networks feature pyramid progressive structural receptive field global attention F-measure index
  • 相关文献

参考文献4

二级参考文献72

  • 1Wolfe J. Guided search 2. 0. A revised model of visual search[J]. Psychonomic Bulletin & Review, 1994,1(2) :202 -238.
  • 2Steven Yantis. Sensation and perception [ M]. New York:Worth Publishers,2013.
  • 3Santella A, Agrawala M,Decarlo D,et al. Gaze - based inter-action for semi - automatic photo cropping [ C ]. In Proceed-ing SIGCHI Conference Human Factors Computer, 2006 :771 -780.
  • 4Bradley A,Stentiford F. Visual attention for region of interestcoding [ J]. J. Vis. Commun. Image Represent.,2003, 14(3):232-250.
  • 5Wang L,Xue J,Zheng N,et al. Automatic salient object ex-traction with contextual cue [ C ]. In ICCV,2011.
  • 6Navalpakkam V, Itti L. An integrated model of top - downand bottom - up attention for optimizing detection speed[C].In CVPR,2006.
  • 7Lang Congyan,Liu Guangcan,Yu Jian,et al. Saliency detec-tion by multitask sparsity pursuit [ J]. IEEE Transactions onImage Processing,2012,21(3) :1327 - 1338.
  • 8Shen Xiaohui,Wu Ying. A unified approach to salient objectdetection via low rank matrix recovery [ C]. 2012 IEEE Con-ference on Computer Vision and Pattern Recognition(CVPR) ,2012-.853,860.
  • 9Wei Y, Wen F,Zhu W,et al. Geodesic saliency using back-ground priors [ C]. In ECCV,2012 :29 -42.
  • 10Itti L,Koch C,Niebur E, A model of saliency - based visualattention for rapid scene analysis [ J ]. IEEE Transactions onPAMI,1998,20(11) : 1254 - 1259.

共引文献69

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部