期刊文献+

基于改进CoSaMP的管道污垢超声检测信号的压缩重构研究 被引量:1

RESEARCH ON COMPRESSION AND RECONSTRUCTION OF TUBE FOULING ULTRASONIC TESTING SIGNAL BASED ON IMPROVED COSAMP
下载PDF
导出
摘要 在超声检测中,传感器采集数据时易造成冗余信号和随机噪声,抑制随机噪声的同时压缩重构信号一直是超声检测领域的研究热点和难点。基于压缩感知理论和超声检测方法,提出一种改进压缩采样匹配追踪(Compressive Sampling Matching Pursuit,CoSaMP)的管道污垢超声检测信号压缩重构算法:采用K-SVD算法稀疏表示超声检测信号,推导峰值信噪比与迭代次数之间的关系,自适应确定稀疏度,利用回波信号与随机噪声在变换域的稀疏表征差异拾取有效信息。结果表明:该改进CoSaMP算法能准确定位信号稀疏度,重构超声检测信号反映了原始信号特征,且运算时间明显缩短,证明了改进CoSaMP算法重构超声检测信号的可行性。 In ultrasonic tests,the redundant signal and random noise are easily to be generated when the sensor collects data.Compressing and reconstructing the signal or noise always get the researchers’ attention.Based on the theory of compressive sensing and ultrasonic testing method,an improved CoSaMP for tube fouling ultrasonic testing compression and reconstruction was proposed:The K-SVD algorithm was used to sparsely represent the ultrasonic testing signal.The relationship between the peak signal to noise ratio and the number of iterations was derived to determine the sparse degree adaptively.Finally,the sparsity differences of the echo signal and random noise in the transform domain was used to pick up effective information.The results showed that the improved CoSaMP algorithm can accurately locate signal sparsity.The reconstructed signal reflects that the characteristics of the original signal and the operation time are shorter.That proves the feasibility of the improved CoSaMP algorithm.
作者 王彤彤 孙灵芳 WANG TongTong;SUN LingFang(Zhejiang Industry Polytechnic College,Shaoxing 312000,China;Energy Conservation&Measure-Control Research Center,Jilin 132012,China)
出处 《机械强度》 CAS CSCD 北大核心 2020年第6期1316-1322,共7页 Journal of Mechanical Strength
基金 吉林省自然科学基金项目(20180101075JC)资助。
关键词 换热管 超声检测信号 压缩感知 噪声压制 压缩采样匹配追踪 峰值信噪比 Heat exchange tube Ultrasonic testing signal Compressive sensing Noise suppression Compressive sampling matching pursuit Peak signal to noise ratio
  • 相关文献

参考文献14

二级参考文献111

共引文献80

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部