期刊文献+

基于U型全卷积神经网络的路面裂缝检测 被引量:7

Pavement crack detection based on the U-shaped fully convolutional neural network
下载PDF
导出
摘要 路面裂缝检测是道路运营和维护的一项重要工作,由于裂缝没有固定形状而且纹理特征受光照影响大,基于图像的精确裂缝检测是一项巨大的挑战。本文针对裂缝图像的特点,提出了一种U型结构的卷积神经网络UCrackNet。首先在跳跃连接中加入Dropout层来提高网络的泛化能力;其次,针对上采样中容易产生边缘轮廓失真的问题,采用池化索引对图像边界特征进行高保真恢复;最后,为了更好地提取局部细节和全局上下文信息,采用不同扩张系数的空洞卷积密集连接来实现感受野的均衡,同时嵌入多层输出融合来进一步提升模型的检测精度。在公开的道路裂缝数据集CrackTree206和AIMCrack上测试表明,该算法能有效地检测出路面裂缝,并且具有一定的鲁棒性。 Crack detection is one of the most important works in the system of pavement management.Cracks do not have a certain shape and the appearance of cracks usually changes drastically in different lighting conditions,making it hard to be detected by the algorithm with imagery analytics.To address these issues,we propose an effective U-shaped fully convolutional neural network called UCrackNet.First,a dropout layer is added into the skip connection to achieve better generalization.Second,pooling indices is used to reduce the shift and distortion during the up-sampling process.Third,four atrous convolutions with different dilation rates are densely connected in the bridge block,so that the receptive field of the network could cover each pixel of the whole image.In addition,multi-level fusion is introduced in the output stage to achieve better performance.Evaluations on the two public Crack-Tree206 and AIMCrack datasets demonstrate that the proposed method achieves high accuracy results and good generalization ability.
作者 陈涵深 姚明海 瞿心昱 Chen Hanshen;Yao Minghai;Qu Xinyu(College of Information Engineering,Zhejiang University of Technology,Hangzhou,Zhejiang 310023,China;Zhejiang Institute of Communications,Hangzhou,Zhejiang 311112,China)
出处 《光电工程》 CAS CSCD 北大核心 2020年第12期65-75,共11页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61871350) 浙江省自然科学基金资助(GG19E050005)。
关键词 裂缝检测 卷积神经网络 UCrackNet 感受野 crack detection convolutional neural network UCrackNet receptive field
  • 相关文献

参考文献2

二级参考文献50

  • 1高建贞,陆建峰,赵春霞,唐振民,杨静宇.基于多级拟合的道路病害自动检测与识别[J].计算机工程与应用,2004,40(22):220-223. 被引量:5
  • 2张洪光,王祁,魏玮.基于人工种群的路面裂纹检测[J].南京理工大学学报,2005,29(4):389-393. 被引量:10
  • 3周晓青,孙立军.国际平整度指数与行驶车速的关系[J].同济大学学报(自然科学版),2005,33(10):1323-1327. 被引量:30
  • 4王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346. 被引量:11
  • 5马荣贵,沙爱民,宋宏勋.路面车辙多路传感器检测误差分析[J].长安大学学报(自然科学版),2007,27(3):34-36. 被引量:18
  • 6Cheng H D, Miyojim M. Automatic pavement distress detection system [ J ]. Journal of Information Sciences, 1998, 108 ( 1 ) : 219 -240.
  • 7Kirschke K R, Velinsky S. A histogram-based approach for auto- mated pavement-cracks sensing [ J ]. Journal of Transportation Engineering, 1992, 119(3 ) : 700-710.
  • 8Egemen T, Vimn R A, Halil C, et al. Digital image processing for pavement distress analyses [ C ]//The 2005 Mid-Continent Transportation Research Symposium. Ames, Iowa, USA: Iowa State University, 2005 : 1-13.
  • 9Li Q Q, Liu X L. A model for segmentation and distress statistic of massive pavement image based on muli-sacle strategies [ J ]. The International Archives of the Photogrammetry, Remote Sens- ing and Spatial information Sciences, 2008, 37( B5 ) : 63-68.
  • 10Bahram J, Jack S, Sherif K, et al. Pilot for automated detection and classification of road surface degradation features, JHR 03- 293 [ R]. Connecticut, USA: Connecticut Transportation Institu- te, 2003.

共引文献77

同被引文献44

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部