期刊文献+

从原子到超原子的原子层次新机遇 被引量:1

From atom to superatom:A new opportunity at atomic level
下载PDF
导出
摘要 为何超原子如此重要?从发展过程来体会,是因为终于可以把纷繁复杂的团簇结构以量子力学属性实现物理规律把握,从而为以团簇作为基元的物性表征与调控包括相关的制造和功能应用提供了基于原子层次的抓手.因此可认为,由团簇科技发展到超原子的物理学研究是必然的,所以我们提出了超原子物理学的概念和范畴.超原子作为归属于分子的多原子复杂系统,它的电子结构与原子有相近性,凸显了超原子系统中相互作用有深刻且丰富的物理内涵.依托于原子物理学的巨大成就,将原子层次的科技能力结合到超原子研究上,将开辟新的领域方向,促进从结构出发的传统研究思路转变到以功能为核心的研究范式,从而带来新的发展机遇. Why are superatoms so important?From the development process,we can finally grasp the complex cluster structure by quantum mechanical properties,so as to provide the atomic-level gripper for the characterization and regulation of cluster as the basic element,as well as the manufacture and functional application.Against this background,it can also be considered that the development of cluster science and technology to the physics of superatoms is inevitable,we put forward the concept and category of superatomic physics.As a complex multi-atomic system,the electron structure of superatoms is similar to that of atoms,which highlights the deep and rich physical connotation of the interaction in superatoms.Relying on the great achievements of atomic physics,combining the scientific and technological capabilities at the atomic level to study on superatoms will open up new fields and promote the paradigm transformation of traditional research ideas from structure to function,thus bringing new development opportunities.
作者 王志刚 WANG Zhi-Gang(Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China)
出处 《原子与分子物理学报》 CAS 北大核心 2020年第6期980-986,共7页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(11974136,11674123,11374004)。
关键词 原子 超原子 原子层次 Atom Superatom Atomic level
  • 相关文献

参考文献7

  • 1Jianpeng Wang,Weiyu Xie,Yang Gao,Dexuan Xu,Zhigang Wang.Emerging disciplines based on superatoms: a perspective point of view[J].Science Bulletin,2018,63(7):395-397. 被引量:1
  • 2M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:540
  • 3Tianrong Yu,Yang Gao,Dexuan Xu,Zhigang wang.Actinide endohedral boron clusters: A closed-shell electronic structure of U@B40[J].Nano Research,2018,11(1):354-359. 被引量:3
  • 4Yang Gao,Bo Wang,Yanyu Lei,Boon K. Teo,Zhigang Wang.Actinide-embedded gold superatom models: Electronic structure, spectroscopic properties, and applications in surface-enhanced Raman scattering[J].Nano Research,2016,9(3):622-632. 被引量:3
  • 5王志刚.超原子物理学:原子层次上物理的新方向[J].科学通报,2020,65(21):2196-2200. 被引量:1
  • 6Jia Wang,Wanrun Jiang,Weiyu Xie,Jianpeng Wang,Zhigang Wang.Superatom-assembly induced transition from insulator to semiconductor:A theoretical study[J].Science China Materials,2019,62(3):416-422. 被引量:1
  • 7高阳,王志刚.Effects of 5f-elements on electronic structures and spectroscopic properties of gold superatom model[J].Chinese Physics B,2016,25(8):1-9. 被引量:3

二级参考文献174

  • 1Pyykko, P. Theoretical chemistry of gold. III. Chem. Soc. Rev. 2008, 37, 1967-1997.
  • 2Li, X.; Kiran, B.; Li, J.; Zhai, H. J.; Wang, L. S. Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew. Chem., Int. Ed. 2002, 41, 4786-4789.
  • 3Pyykko, P.; Runeberg, N. Icosahedral WAu12: A predicted closed-shell species, stabilized by aurophilic attraction andelativity and in accord with the 18-electron rule. Angew. Chem., Int. Ed. 2002, 114, 2278-2280.
  • 4Gao, Y.; Chen, L.; Dai, X.; Song, R. X.; Wang, B.; Wang, Z. Q. A strong charge-transfer effect in surface-enhanced Raman scattering induced by valence electrons of actinide elements. RSCAdv. 2015, 5, 32198-32204.
  • 5Neukermans, S.; Janssens, E.; Tanaka, H.; Silverans, R. E.; Lievens, P. Element- and size-dependent electron delocaliza- tion in AuNX+ clusters (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Phys. Rev. Lett. 2003, 90, 033401.
  • 6Gao, Y.; Bulusu, S.; Zeng, X. C. Gold-caged metal clusters with large HOMO-LUMO gap and high electron affinity, j Am. Chem. Soc. 2005, 127, 15680-15681.
  • 7Zhai, H. J.; Li, J.; Wang, L. S. Icosahedral gold cage clusters: M@Au12 (M = V, Nb, and Ta). J. Chem. Phys. 2004, 121, 8369-8374.
  • 8Teo, B. K.; Zhang, H. Polyicosahedricity: Icosahedron to icosahedron of icosahedra growth pathway for bimetallic (Au-Ag) and trimetallic (Au-Ag-M; M - Pt, Pd, Ni) supraclusters; synthetic strategies, site preference, and stereochemical principles. Coord. Chem. Rev. 1995, 143, 611-636.
  • 9Zhao, L. L.; Jensen, L.; Schalz, G. C. Pyridine-Ag20 cluster: A model system for studying surface-enhanced raman scattering. J. Am. Chem. Soc. 2006, 128, 2911-2919.
  • 10Khanna, S. N.; Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 1992, 69, 1664-1667.

共引文献545

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部