期刊文献+

气压对于低气压双频容性耦合Ar/O2等离子体放电特性影响的研究 被引量:3

Study on the effect of atmospheric pressure on the discharge characteristics of capacitively coupled Ar/O2 plasma at low pressure
下载PDF
导出
摘要 研究了气压对双射频氩氧混合等离子体电子温度和电子密度的影响。在13.56MHz低频功率和94.92MHz高频功率固定为60W和氩氧气体比为1:9的情况下,利用发射光谱法分析了气压不同时氩氧混合等离子体的放电光谱中的特征谱线的变化规律。使用一维质点网格法(PIC-MC)静电模型计算了电子温度和电子密度。结果表明:电子温度随着气压的增加先降低后升高,与实验结果趋势相吻合;电子密度随着气压的增加先增大后减小。 Influence of gas pressure on electron temperature and electron density of argon-oxygen plasma induced by dual radio frequency(RF)source with a high-frequency of 94.92 MHz and a low-frequency of 13.56 MHz is studied.Under the condition that the low-frequency power and the high-frequency power are fixed at 60 W and the argon-oxygen gas ratio is 1:9,the characteristic lines in the discharge spectrum of the argon-oxygen mixed plasma at different pressures is analyzed.The electron temperature and electron density is simulated with the one-dimensional PIC-MC(Particle-in-cell and Monte-Carlo)electrostatic model.The results show that the electron temperature decreases first and then rises with the increase of air pressure,consistent with the experimental result;the electron density first increases and then decreases with the increase of air pressure.
作者 吴良超 殷桂琴 孟祥国 周有有 王兢婧 WU Liang-chao;YIN Gui-qin;MENG Xiang-guo;ZHOU You-you;WANG Jin-jing(School of Physics and Electronic Engineering,Northwestern Normal University,Lanzhou,730070)
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2020年第4期372-378,共7页 Nuclear Fusion and Plasma Physics
基金 国家自然科学基金(11665021)。
关键词 双频容性耦合等离子体 发射光谱法 蒙特卡罗碰撞方法 等离子体清洗 Dual-frequency capacitive coupled plasma Emission spectrometry Monte Carlo collision method Plasma cleaning
  • 相关文献

参考文献3

二级参考文献49

  • 1Li S Z, Huang W T, Zhang J L, et al. 2009, Appl Phys. Lett., 94:111501.
  • 2Uhm H S, Lim J P, Li S Z. 2007, Appl. Phys. Lett. 90:261501.
  • 3Koo J M, Lee J B, Moon Y J, et al. 2008, J. Phys Conf. Series, 100:012034.
  • 4Moravej M, Yang X, Hicks R F, et al. 2007, J. Appl Phys., 99:093305.
  • 5Deng X T, Shi J J, Kong M G. 2007, J. Appl. Phys. 101:074701.
  • 6Shashurin A, Keidar M, Bronnikov S, et al. 2008, Appl Phys. Lett., 93:181501.
  • 7Li S Z, Lim J P, Kang J G, et al. 2006, Phys. Plasmas 13:093503.
  • 8Palmer A J. 1974, Appl. Phys. Lett., 25:138.
  • 9Levatter J I, Lin S C. 1980, J. Appl. Phys., 51:210.
  • 10Qi B, Ren C S, Wang D Z, et al. 2007, Appl. Phys Lett.. 89:131503.

共引文献7

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部