摘要
考虑定义在一个半无穷柱体上二元混合物中的热传导方程,其中柱体的母线平行于坐标轴。假设方程在柱体的侧面上满足非齐次Neumann边界条件,在柱体的有限端满足非线性条件,运用能量估计的方法,得到了方程的Phragmén-Lindelöf二择性结果。在衰减的情形下,为了使结果有意义,建立全能量的上界。
The heat conduction equations in a binary mixture which are defined in a semi-infinite cylinder is considered and the generatrix of the cylinder is parallel to the coordinate axis.Assuming that the equations satisfy the nonhomogeneous Neumann boundary conditions on the lateral surface of the cylinder and the nonlinear conditions on the finite end of the cylinder,the method of energy estimation is used to obtain the Phragmén-Lindelöf alternative results of the equations.In the case of decay,in order to make the results meaningful,the upper bound of total energy is established.
作者
李远飞
陈雪姣
石金诚
LI Yuan-fei;CHEN Xue-jiao;SHI Jin-cheng(School of Data Science,Huashang College Guangdong University of Finance&Economics,Guangzhou 511300,Guangdong,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2020年第12期1-12,24,共13页
Journal of Shandong University(Natural Science)
基金
广东省普通高校重点资助项目(2019KZDXM042)。