摘要
为了研究季冻区水泥土的强度与变形特征,推动其在寒区设施农业与新农村建设中的应用,以内蒙古黄河灌区周边典型的粉砂土为主要骨料,以硅酸盐水泥为胶凝材料,采用机械压实和人工击实方法分别制作了高径比为1和2的圆柱体试件,利用WDW-50微机控制电子式万能试验机开展单轴抗压室内试验。对比研究了两种成型试件的强度变化规律,建立了相应的强度预测模型;并对其破坏形态、破坏应变和变形模量开展了分析。试验结果表明:两组成型试样具有相似的强度变化规律。因此,强度预测模型的建立需要精细化研究。高径比与水泥掺量的变化对破坏形态、破坏应变影响很大,试样的变形模量与无侧抗压强度基本满足线性关系。
To study the strength and deformation of cement soil in seasonal frozen area,and promote its application in the construction of facilities agriculture and new rural construction in cold zone,using the typical silty soil in the Huanghe(Yellow)River irrigation area around Inner Mongolia as the aggregate,and Portland cement as the gluing materials,two types of cylinder specimens in 1 and 2 of high to diameter ratio were prepared by mechanical compaction and artificial compaction,respectively.Unconfined compression indoor tests were conducted by using a microcomputer-controlled electronic universal testing machine WDW-50.The intensity variation of the two cylinder specimens was compared,the corresponding strength prediction model was established,and the destructive form,damage strain,and deformation modulus were analyzed.The experimental results show that the two cylinder specimens had similar strength variation patterns,thus,the establishment of the strength prediction model requires fine adjustment in the study.Changing the high to diameter ratio and cement content affected largely the destruction pattern and damage strain,and the relationship between the deformation modulus of the specimen and the unconfined compression strength were linear in overall.
作者
周海龙
安珍
申向东
ZHOU Hai-long;AN Zhen;SHEN Xiang-dong(College of Water Conservancy and Civil Engineering,Inner Mongolia Agricultural University,Hohhot 010018,China;College of Material Science and Art Design,Inner Mongolia Agricultural University,Hohhot 010018,China)
出处
《科学技术与工程》
北大核心
2020年第34期14207-14212,共6页
Science Technology and Engineering
基金
国家自然科学基金(51569021)
内蒙古自然科学基金(2020MS05076)
内蒙古自治区高等学校科学研究项目(NJZZ16057)
内蒙古自治区研究生教育教学改革研究与实践项目(YJG20181012902)。
关键词
水泥土
无侧限抗压强度
预测模型
变形模量
cement soil
unconfined compression strength
prediction model
deformation modulus