期刊文献+

基于模糊神经网络的导航数据融合算法仿真设计

下载PDF
导出
摘要 为提高导航数据融合的准确性,提出了一种基于模糊神经网络的异构数据融合算法,利用粒子群算法对传统学习算法进行优化,保证了对导航目标的识别能力,提高异构数据的融合精度。利用优化的模糊神经网络对导航数据进行融合仿真,结果表明该算法可有效地提高数据融合速度,减小融合误差。
作者 张群芳
出处 《科教导刊(电子版)》 2020年第33期292-293,共2页 The Guide of Science & Education (Electronic Edition)
基金 贵州省大学生创业创新项目,项目编号:20195201880。
  • 相关文献

参考文献3

二级参考文献40

  • 1陈新海.最佳估计理论[M].北京:北京航空学院出版社,1987..
  • 2Wen Chenglin, Pan Quan, Zhang Hongcai, Dai Guanzhong. Multi - sensor single model multiscale fusion[ J ]. Control theory and applications, 2000, 17(6) :841 - 846.
  • 3MANYIKA J, CHUI M, BROWN B, etal. Big data: The next frontier for innovation, competition, and productivity [EB/OL]. [2012-10-02].http://www.mckinsey.com/Insight/MGI/ Research/Technology_and_Innovation/ Big_data The next frontier_for_innovation.
  • 4BARWICK H. The "four Vs" of big data. Implementing Information Infrastructure Symposium [EB/OLI. [2012-10-02]. http:// www.computerworld.com.au/article/396198/iiis four vs_big_data/.
  • 5GHEMAWAT S, GOBIOFF H, LEUNG S. The Google file system [CI//Proceedings of the 19th ACM SIGOPS Symposium on Operating Systems Principles (SOSP'03), Oct 19 - 22, 2003, Bolton Landing, NY, USA. New York,NY, USA: ACM, 2003:29-43.
  • 6DEAN J, GHEMAWAT S. MapReduce: Simplified data processing on large clusters [C]//Proceedings of the 6th USENIX Symposium on Operation Systems Design and Implementation (OSDI '04), Dec 6-8, 2004, San Francisco, CA USA. New York, NY USA: ACM. 2004:137-150.
  • 7CHANG F, DEAN J, GHEMAWAT S, et.al. Bigtable: A distributed storage system for structured data [C]//Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI '06), Nov 6-8,2006, Seattle,WA, USA. Berkeley, CA, USA: USENIX Association. 2006:205-218.
  • 8CHAIKEN R, JENKINS B, LARSON P, et al. SCOPE: Easy and efficient parallel processing of massive data sets [J]. Proceedings of the VLDB Endowment (PVLDB), 2008, 1 (2): 1265-1276.
  • 9HDFS Architecture Guide [EB/OL]. [2012-10-02]. http://hadoop.apache.org/docs/ hdfs/r0.22.0/hdfs_design.html.
  • 10FastDFS [EB/OL]. [2012-10-02]. http://code. google .com/p/fastdfs/w/list.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部