期刊文献+

Catalytic oxidation of o-chlorophenol over Co2XAI(X=Co,Mg,Ca,Ni)hydrotalcite-derived mixed oxide catalysts

原文传递
导出
摘要 A cobalt-based hydrotalcite-like compound was prepared using a constant-pH coprecipitation method.Cobalt-transition metal oxides(Co2XA10,X=Co,Mg,Ca and Ni)were investigated for the deep catalytic oxidation of o-chlorophenol as a typical heteroatom contaminant containing chlorine atoms.The partial substitution of Co by Mg,Ca or Ni in the mixed oxide can promote the catalytic oxidation of o-chlorophenol.The Co2MgA10 catalyst presented the best catalytic activity,and could maintain 90%o-chlorophenol conversion at 167.1℃,compared only 27%conversion for the Co3A10 catalyst.The results demonstrated that the high activity could be attributed to its increased low-temperature reducibility,rich active oxygen species and excellent oxygen mobility.In the existence of acid and base sites,catalysts with strong basicity also showed preferred activity.The organic by-products generated during the o-chlorophenol catalytic oxidation over Co2MgAlO catalyst included carbon tetrachloride,trichloroethylene,2,4-dichlorophenol,and 2,6-dichloro-p-benzoquinon,et al.This work provides a facile method for the preparation of Co-based composite oxide catalysts,which represent promising candidates for typical chlorinated and oxygenated volatile organic compounds.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2020年第6期159-169,共11页 环境科学与工程前沿(英文)
基金 This work is financially supported by the National Natural Science Foundation of China(Grant Nos.21677160 and 21477149) Beijing Municipal Science&Technology Commission(Nos.Z181100000118003 and Z 181100005418011).
  • 相关文献

参考文献5

二级参考文献68

  • 1M. J. Zhou, L. L. Cai, M. Bajdich, M. Garcla-Melchor, H. Li, l. J. He, l. Wilcox, W. D. Wu, A. Vojvodic, X. L. Zheng, ACS Catal., 2015, 5, 4485-4491.
  • 2M. M. Natile, A. Glisenti, Chem. Mater., 2005, 17, 3403-3414.
  • 3X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746-749.
  • 4L. 14. Hu, K. Q. Sun, Q. Peng, B. Q. Xu, Y. D. Li, Nano Res., 2010, 3, 363-368.
  • 5S. Gaur, S. Johansson, F. Mohammad, C. S. S. R. Kumar, J. J. Spivey,J, Phys. Chem. C, 2012, 116, 22319-22326.
  • 6S. H. Xie, H. X. Dai, J. G. Deng, Y. X. Liu, H. G. Yang, Y. Jiang, W. Tan, A. S. Ao, G. S. Guo, Nanoscale, 2013, 5, 11207-11219.
  • 7R. Kumar, J. H. Oh, 1-1. J. Kiln, J. H. Jung, C. H. lung, W. G. Hong, H. J. Kim, J. Y. Park, L. K. Oh, ACSNano., 2015, 9, 7343-7351.
  • 8Y. Lou, L. Wang, Z. Y. Zhao, Y. H. Zhang, Z. G. Zhang, G. Z. Lu, Y. Guo, . L. Guo, Appl. Catal. B, 2014, 146, 43-49.
  • 9R. D. Zhang, P. X. Li, N. Liu, W. Yang, X. D. Wang, R. Cui, B. H. Chen,CataL Today, 2013, 216, 169-177.
  • 10Y. Ren, Z. Ma, L. P. Qian, S. Dai, H. Y. He, P. G. Bruce, Catal. Lett. 2009, 131, 146-154.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部