期刊文献+

低复杂度的fMRI脑激活区定位的盲分离算法

A blind separation algorithm with low complexity for fMRI brain activation
下载PDF
导出
摘要 功能磁共振成像(FMRI)是一种医学影像技术,由于具有非侵入性和较高的时空分辨率等优点现已被广泛应用于脑区定位。然而传统的FMRI信号分离算法复杂度太高,运行时间长,不利于FMRI技术更有效地应用于脑功能的研究。针对传统FMRI脑区分离算法的计算复杂度问题,提出了一种基于二阶哈达码变换的盲分离算法。先计算fMRI数据中血氧水平依赖(BOLD)信号的相关函数,然后对其进行特征值分解得到解混矩阵,以此实现激活脑区定位。由于哈达码只由1或-1构成,因此可减少BOLD信号相关矩阵计算的复杂度。仿真结果表明,相比高阶统计量的独立分量分析(ICA)和二阶统计量的傅里叶变换盲分离算法,该算法的计算时间分别只有其25%和50%,而定位误差却较为接近。 Functional magnetic resonance imaging(FMRI)is a medical imaging technology widely employed in brain region positioning for its non-invasiveness and high spatiotemporal resolution.However,the traditional FMRI signal separation algorithm was too complex and time-consuming to effectively apply the FMRI technology to brain function research.Aiming at the computational complexity of traditional FMRI brain separation algorithms,a blind separation algorithm was proposed based on the second-order Hadamard transform.This algorithm first calculated the correlation function of the blood oxygen level dependent(BOLD)signal in the fMRI data,and then performed eigenvalue decomposition to obtain the unmixing matrix,thereby realizing the activation of brain regions.Given the composition of the Hadamard being only 1 or-1,the complexity can be reduced for the BOLD signal correlation matrix calculation.The simulation results show that compared with the independent component analysis(ICA)of high-order statistics and the Fourier transform blind separation algorithm of second-order statistics,the calculation time of this algorithm was only 25%and 50%of theirs,respectively,while the positioning error was close.
作者 陈安莹 吴海锋 李栋 CHEN An-ying;WU Hai-feng;LI Dong(School of Electrical and Information,Yunnan Minzu University,Kunming Yunnan 650500,China)
出处 《图学学报》 CSCD 北大核心 2020年第6期947-953,共7页 Journal of Graphics
基金 国家自然科学基金项目(61762093) 云南省应用基础研究重点项目(2018FA036) 云南省高校智能传感网络及信息系统科技创新团队 2018年云南民族大学研究生创新基金项目(2018YJCXS176)。
关键词 功能磁共振成像 盲分离 独立分量分析 二阶统计量的盲辨识 脑激活区 functional magnetic resonance imaging blind separation independent components analysis second order blind identifiability brain activation area
  • 相关文献

参考文献2

二级参考文献13

  • 1潘丽丽,史振威,唐焕文,唐一源,张伟伟.fMRI信号盲分离的一种独立成分分析算法[J].大连理工大学学报,2005,45(4):607-611. 被引量:6
  • 2Friston K J, Frith C D, Liddle P F, et al. Comparing functional (PET) images: the assessment of significant change [J]. Cerel Blood Flow Metab, 1991,11:690-699
  • 3Friston K J. Introduction: Experimental design and statistical parametric mapping (2nd edition) [ M ]. Human Brain Function. London Academic Press, 2003
  • 4Friston K J, Jezzard P J, Turner R. Analysis of functional MRI time-series [ J ]. H n Brain Mapping, 1994,1:153-171
  • 5Friston K J, Holmes A P, Poline J B, et al. Analysis of fMRI times-series revisited[ J] . NeuroImage, 1995,2:45-53
  • 6Friston K J, Holmes A P, Worsley K J, et al. Statistical parametric maps in functional imaging: A general linear model approach [ J ]. Human Brain Mapping, 1995,2:189 -210
  • 7Aguirre G K, Zarahn E, D'Esposito M. A critique of the use of the Kolmogorov-Smirnov (KS) statistic for the analysis of BOLD fMRI data[J]. Mag Res Med, 1998,39:500-505
  • 8Worsley K J, Friston K J. Analysis of fMRI times-series revisited-again [ J ]. NeuroImage, 1995,2:173-181
  • 9Seber G A F. Linear regression analysis[M]. New York, John Wiley & Sons, 1977:14
  • 10公昱文,张桂芸,马洪芝.ICA算法在fMRI中的应用[J].计算机工程与科学,2008,30(10):37-39. 被引量:5

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部