期刊文献+

变体辅助的无人机栖落机动模糊控制设计 被引量:2

Fuzzy Control Design for Perching Maneuvers of Morphing UAVs
下载PDF
导出
摘要 无人机(Unmanned aerial vehicle,UAV)的栖落机动是一种大幅度的俯仰运动,易引起升降舵操纵力矩饱和。本文以变体方式增强无人机的俯仰操纵能力,并研究其对应的控制设计方法。首先对栖落机动建立了纵向动力学模型,并通过采用轨迹线性化和张量积变换方法转换得到T-S模糊模型。基于Lyapunov稳定理论和平方和方法,设计了满足控制输入约束的栖落机动多项式模糊控制器。对非变体与变体下的栖落机动控制过程进行了仿真,结果验证了控制律的有效性,并且表明变体辅助的无人机具有更强的操纵性能,能提高栖落机动中升降舵的抗饱和能力。 A perching maneuver is a kind of fierce pitching. An unmanned aerialvehicle(UAV)may probably be caught in saturation of the control moment of its elevators during such a process. A morphing mechanism is introduced to strengthen the capability of pitching control,and its corresponding controllers is discussed.Dynamic models of the longitudinal motion are generated at the beginning,and then T-S fuzzy models are obtained by trajectory linearization and tensor product transformation. According to Lyapunov stability theory and sum-of-square approach,polynomial fuzzy controllers meeting the constraints of control inputs are designed. After that,simulations of perching tasks are launched for both the rigid UAV and the morphing one. The results of simulations demonstrate that the morphing UAV has got its edge in maneuverability over the rigid one,and is more capable of suppressing the saturation of elevators.
作者 岳珵 何真 王无天 YUE Cheng;HE Zhen;WANG Wutian(College of Automation Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing,211106,China)
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第6期871-880,共10页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(61873126)资助项目。
关键词 栖落机动 变体飞行器 T⁃S模糊模型 平方和 飞行控制 perching maneuver morphing aircraft T-S fuzzy model sum of squares flight control
  • 相关文献

参考文献3

二级参考文献7

  • 1Chen J Q,Xi Y G,Zhang Z J.A clustering algorithm for fuzzy model identification[J].Fuzzy Sets and Systems,1998,98 (3):319 ~329.
  • 2ChuangC C,Hsiao C C,Jeng J T.A novel approach for TSK fuzzy modeling with outliers[A].2003 International Conference on Machine Learning and Cybernetics[C].Piscataway,NJ,USA:IEEE,2003.2158 ~2163.
  • 3Leng G,Prasad G,McGinnity T M.An on-line algorithm for creating self-organizing fuzzy neural networks[J].Neural Networks,2004,17(10):1477~1493.
  • 4Tsekouras G,Sarimveis H,Kavakli E,et al.A hierarchical fuzzyclustering approach to fuzzy modeling[J].Fuzzy Sets and Systems,2005,150(2):245 ~266.
  • 5Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Transactions on Systems,Man and Cybernetics,1985,SMC-15 (1):116~132.
  • 6Wang L W,Mendel Z Y.Fuzzy basis functions,universal approximation and orthogonal least-squares learning[J].IEEE Transactions on Neural Networks,1992,3(5):807 ~814.
  • 7Chen J Q,Chen L J.An on-line identification algorithm for fuzzy systems[J].Fuzzy Sets and Systems,1994,64(1):63 ~72.

共引文献11

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部