摘要
疟原虫作为一种单细胞生物,有着庞大复杂的代谢网络系统,各代谢途径之间存在着密切的联系来维持疟原虫自身能量与物质的转化。疟原虫能量代谢途径主要有糖酵解和氧化磷酸化2种,其中红内期疟原虫以糖酵解作为主要的供能方式,而由氧化磷酸化产生的供能较少。此外,与能量代谢密切相关的2种碳代谢途径分别为三羧酸(TCA)循环途径和谷氨酸代谢途径,TCA循环作为代谢的核心,连接了糖酵解与谷氨酸代谢,谷氨酸代谢作为主要的碳代谢途径还参与了嘧啶代谢、卟啉代谢以及蛋白质生物合成等多种物质代谢途径。该文对现有的已知疟原虫的能量代谢途径和与能量代谢密切相关的碳代谢途径进行综述,以加深对红内期疟原虫能量代谢的理解,进而为抗疟药物的作用机制和耐药性问题提供理论基础和参考借鉴。
As a single-cell organism, Plasmodium has a large and complex metabolic network system. There is a close relationship between various metabolic pathways to maintain the transformation of Plasmodium′s own energy and substances. Plasmodium energy metabolism pathways mainly include glycolysis and oxidative phosphorylation. Among them, Plasmodium at the erythrocytic stage takes glycolysis as the main energy supply method, and less energy is generated by oxidative phosphorylation. In addition, the two carbon metabolism pathways closely relating to energy metabolism are the tricarboxylic acid(TCA) cycle pathway and glutamate metabolism pathway. As the core of metabolism, the TCA cycle connects glycolysis and glutamate metabolism;glutamate metabolism, as the main carbon metabolism pathway, also participates in various metabolic pathways, such as pyrimidine metabolism, porphyrin metabolism, and protein biosynthesis. This article reviews the energy metabolism pathways of Plasmodium and carbon metabolism pathways that are closely related to energy metabolism, in order to deepen the understanding of the energy metabolism of Plasmodium at the erythrocytic stage, and then provide the theoretical basis and references for studying the mechanisms of action and the drug resistance of antimalarial drugs.
作者
马冀
李沧海
姜廷良
MA Ji;LI Cang-hai;JIANG Ting-liang(Research Center of Artemisinin,China Academy of Chinese Medical Sciences,Beijing 100700,China;Institue of Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing 100700,China)
出处
《中国中药杂志》
CAS
CSCD
北大核心
2020年第22期5403-5411,共9页
China Journal of Chinese Materia Medica
基金
国家自然科学基金重点项目(81641002、81841001)。
关键词
疟原虫
能量代谢
糖酵解
氧化磷酸化
TCA循环
谷氨酸代谢
研究进展
Plasmodium
energy metabolism
glycolysis
oxidative phosphorylation
TCA cycle
glutamate metabolism
research progress