期刊文献+

Landslide identification using machine learning 被引量:17

下载PDF
导出
摘要 Landslide identification is critical for risk assessment and mitigation.This paper proposes a novel machinelearning and deep-learning method to identify natural-terrain landslides using integrated geodatabases.First,landslide-related data are compiled,including topographic data,geological data and rainfall-related data.Then,three integrated geodatabases are established;namely,Recent Landslide Database(Rec LD),Relict Landslide Database(Rel LD)and Joint Landslide Database(JLD).After that,five machine learning and deep learning algorithms,including logistic regression(LR),support vector machine(SVM),random forest(RF),boosting methods and convolutional neural network(CNN),are utilized and evaluated on each database.A case study in Lantau,Hong Kong,is conducted to demonstrate the application of the proposed method.From the results of the case study,CNN achieves an identification accuracy of 92.5%on Rec LD,and outperforms other algorithms due to its strengths in feature extraction and multi dimensional data processing.Boosting methods come second in terms of accuracy,followed by RF,LR and SVM.By using machine learning and deep learning techniques,the proposed landslide identification method shows outstanding robustness and great potential in tackling the landslide identification problem.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期351-364,共14页 地学前缘(英文版)
基金 supported by the Research Grants Council of the Hong Kong SAR Government(Nos.16205719,AoE/E-603/18 and 16206217)。
  • 相关文献

参考文献5

二级参考文献119

  • 1许冲,徐锡伟.2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J].岩石力学与工程学报,2013,32(S2):3888-3908. 被引量:20
  • 2Biswajeet Pradhan,Saro Lee.利用光学遥感数据、GIS及人工神经网络模型分析区域滑坡灾害(英文)[J].地学前缘,2007,14(6):143-152. 被引量:30
  • 3Alavi, A.H., Gandomi, A.H., 2012. Energy-based models for assessment of soil liquefaction. Geoscience Frontiers 3 (4), 541-555.
  • 4Alavi, A.H., Gandomi, A.H., Modaresnezhad, M., Mousavi, M., 2011b. New ground- motion prediction equations using multi expression programming. Journal of Earthquake Engineering 15 (4), 511-536.
  • 5Alavi, A.H., Gandomi, A.H., 2011. A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations 28 (3), 242-274.
  • 6Alavi, A.H., Ameri, M., Gandomi, A.H., Mirzahosseini, M.R., 2011a. Formulation of flow number of asphalt mixes using a hybrid computational method. Con- struction and Building Materials 25 (3), 1338-1355.
  • 7Alavi, A.H., Gandomi, A.H., Sahab, M.G., Gandomi, M., 2010. Multi expression pro- gramming: a new approach to formulation of soil classification. Engineering with Computers 26 (2), 111-118.
  • 8Allen, M.R., Stott, P.A., Mitchell, J.F.B., Schnur, R., Delworth, T.L, 2000. Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407 (6804), 617-620.
  • 9Atkinson, P.M., Tatnall, A.R.L., 1997. Introduction: neural networks in remote sensing. International Journal of Remote Sensing 18 (4), 699-709.
  • 10Ayala, A., Brauer, M., Mauderly, J.L, Samet, J.M., 2012. Air pollutants and sources associated with health effects. Air Quality Atmosphere and Health 5 (2), 151-167. http://dx.doi.org/lO.lOOT/sl1869-Oll-O155-2.

共引文献114

同被引文献187

引证文献17

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部