期刊文献+

成对旋转不变的共生自适应完全局部三值模式

Pairwise Rotation-Invariant Co-occurrence Adaptive Complete Local Ternary Pattern
下载PDF
导出
摘要 针对成对旋转不变的共生局部二值模式(PRICoLBP)旋转不变性较差及其相关改进算法EPRICoELBP对光照变化和噪声干扰较为敏感的问题,提出了一种增强成对旋转不变的共生自适应阈值完全局部三值模式。通过自适应阈值局部三值模式(ALTP)将图像分成Upper和Lower模式;分别在两种模式中找出像素点LBP特征极大、极小值对应的邻域起始编码点,利用中心像素点与其LBP特征极大、极小值对应的邻域起始编码点作为方向矢量,来确定中心像素点的上下文共生点对;利用自适应阈值完全局部三值模式(ACLTP)提取Upper和Lower模式中共生点对的局部纹理信息;联合上下文共生点对的特征直方图训练卡方核支持向量机,进行纹理图像识别检测。在应用广泛的Brodatz、Outex(TC10、TC12-h、TC12-t、TC14)、CUReT、KTH_TIPS、UIUC标准纹理库中,该算法相较于原始的PRICoLBP算法和其他算法在分类准确率上均有一定的提升,且在添加了高斯噪声和椒盐噪声的KTH_TIPS纹理库中,该算法依旧保持了较高的分类准确率。实验结果表明,该算法对旋转、光照变化和噪声干扰具有较强的鲁棒性。 The texture feature extraction algorithm of Pairwise Rotation Invariant Co-occurrence Local Binary Pattern(PRICoLBP)has characteristics of poor rotation invariance,and its improved algorithm EPRICoELBP can enhance rotation invariance effectively,but it is sensitive to illumination change and noise.In order to solve the issues,an enhanced pairwise rotation-invariant co-occurrence adaptive complete local ternary pattern is proposed.Firstly,the image is divided into Upper pattern and Lower pattern by Adaptive Local Ternary Pattern(ALTP).Secondly,the neighborhood initial coding points corresponding to the maximum and minimum LBP features of the pixels are found in the Upper pattern and Lower pattern respectively.Thirdly,the context co-occurrence point pair of the central pixel point is determined by using the central pixel point and the neighborhood initial points of coding corresponding to the maximum and minimum LBP values of each pixel,respectively.Fourth,the local texture information of co-occurrence point pairs in Upper pattern and Lower pattern is extracted using Adaptive Complete Local Ternary Pattern(ACLTP).At last,a Chi-Square Kernel Support Vector Machine,which is trained with feature histogram of co-occurrence point pairs in context to detect the image texture categories.Compared with the original PRICoLBP algorithm and other algorithms,the proposed algorithm has a obvious improvement in classification accuracy on the Brodatz,Outex(TC10,TC12-h,TC12-t,TC14),CUReT,KTH_TIPS,UIUC texture databases,and on the KTH_TIPS texture databases with Gaussian noise and salt-and-pepper noise,the proposed algorithm still maintains a high classification accuracy.The experimental results show that the proposed algorithm is highly robust to rotation,illumination changes and noise.
作者 陈晓文 刘光帅 刘望华 李旭瑞 CHEN Xiaowen;LIU Guangshuai;LIU Wanghua;LI Xurui(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第1期219-226,共8页 Computer Engineering and Applications
基金 国家自然科学基金(51275431) 四川省科技支撑计划项目(2015GZ0200)。
关键词 共生点对 局部三值模式 成对旋转不变 噪声鲁棒性 自适应阈值 co-occurrence point pairs local ternary pattern pairwise rotation-invariant noise robustness adaptive threshold
  • 相关文献

参考文献2

二级参考文献120

  • 1Ojala T, Pietikinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimi- nation of distributions [ C ] // Proceedings of the 12th Interna- tional IAPR Conference on Pattern Recognition. Jerusalem, Pal- estine: IEEE Computer Society, 1994, 1:582-585.
  • 2Pietikinen M, Ojala T, Nisula J, et al. Experiments with two in- dustrial problems using texture classification based on feature dis- tributions [ C ] //Proceedings of SPIE 2354, Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision. Boston, MA: IEEE Computer Society, 1994-, 2354 : 197-204.
  • 3Ojala T, Pietikinen M, Menp T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-987.
  • 4Ojala T, Pietikinen M, Menp T. Gray scale and rotation invari- ant texture classification with local binary patterns [ C ] // Pro- ceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science. Berlin Heidelberg: Spring- er, 2000, 1842: 404-420.
  • 5Pietikinen M, Nurmela T, Menp T, .et al. View-based recogni- tion of real-world textures [ J ]. Pattern Recognition, 2004, 37(2) : 313-323.
  • 6Ojala T, Pietikinen M, Harwood D. A comparative study of tex- ture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1): 51-59.
  • 7Li S Z, Jain A K. Handbook of Face Recognition [ M]. Berlin, Germany: Springer-Verlag, 2004.
  • 8Ahonen T, Hadid A, Pietikinen M. Face description with local binary patterns: application to face recognition [ J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(12) : 2037-2041.
  • 9Pietikinen M, Ojala T, Xu Z. Rotation-invariant texture classifi- cation using feature distributions [ J ]. Pattern Recognition, 2000, 33(1) : 43-52.
  • 10Gong P, Marcean D J, Howarth P J. A comparison of spatial fea- ture extraction algorithms for land-use classification with SPOT HRV data [ J ]. Remote Sensing of Environment, 1992, 40 : 137-151.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部