期刊文献+

特殊矩阵Hadamard积的谱半径的界 被引量:1

Bounds on the Spectral Radius of Hadamard Products of Special Matrices
原文传递
导出
摘要 【目的】对非负矩阵A和M-矩阵B的逆矩阵的Hadamard积谱半径的上界作进一步的估计。【方法】利用特征值包含域定理和optimally scaled矩阵,通过推导出的两个关于B-1的元素βji和βii间的不等式,使得谱半径上界估计更接近真值。【结果】得到了两个新的估计式,并给出了证明。【结论】数值实验表明新估计式优于现有的估计式。 [Purposes]To further estimate the upper bound of the Hadamard product spectral radius of a non-negative matrix A and the inverse matrix of M-matrix B.[Methods] By using the existence theorem of matrix eigenvalues and optimally scaled matrix,through the derivation of two inequalities between the elements βji and βii of the inverse of the matrix B,the upper bound of the spectral radius is estimated to be closer to the true value.[Findings] Two new estimation formulas are obtained,and proofs are given.[Conclusions]Numerical experiments show that the new estimation formulas is better than the existing estimation formulas.
作者 段复建 范丽媛 DUAN Fujian;FAN Liyuan(School of Mathematics and Computational Science,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2020年第6期83-89,共7页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11461015)。
关键词 非负矩阵 M-矩阵 HADAMARD积 谱半径 估计式 non-negative matrix M-matrices Hadamard product spectral radius estimator
  • 相关文献

参考文献5

二级参考文献23

  • 1[1]Schur I. Bemerkungen Zur Theorem Der Beschrankten Bilinearforme Mit Unendlich Viden Veranderichen [J]. J. Reine Angew. Math, 1911,140:1-28
  • 2[2]Eric Irsoon Im. Narrower Eigenbounds for Hadamard Products[J]. LinearAlgebra Appl. , 1997,264:141-144
  • 3[3]Horm R A, Johnson C R. Matrix Analysis[M]. New York:Cambridge University Press, 1985
  • 4RA合恩 C·R·约翰逊著 杨奇译.矩阵分析[M].天津:天津大学出版社,1989.294-317.
  • 5Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M]. New York: Academic Press, 1979.
  • 6Fiedler M,Markham T. An inequality for the Hadamard product of an M-matrix and inverse M-matrix [J]. Linear Algebra Appl. , 1988,101 : 1-8.
  • 7Horn R A,Johnson C R. Topics in Matrix Analysis[M]. Cambridge: Cambridge University Press, 1985.
  • 8HUANG Rong. Some inequalities for the Hadamard product and the Fan product of matrices[J]. Linear Algebra Appl. , 2008,428 : 1551-1559.
  • 9LI Houbiao, HUANG Tingzhu,SHEN Shuqian, LI Hong. Lower bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse[J]. Linear Algebra Appl. , 2007,420:235-247.
  • 10LI Yaotang,CHEN Fubin, WANG Defeng. New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse[J]. Linear Algebra Appl. ,2009,430:1423-1431.

共引文献25

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部