期刊文献+

CdS修饰TiO2/Sb2S3电荷分离界面增强光催化性能的研究 被引量:1

Enhanced Photocatalytic Performance of TiO2/Sb2S3 by Modification of Charge Separation Interface with CdS
下载PDF
导出
摘要 采用逐次离子层交换吸附法,在TiO2薄膜表面先沉积CdS界面修饰层,再通过化学浴沉积法在TiO2/CdS薄膜表面沉积Sb2S3薄膜,将得到的TiO2/CdS/Sb2S3薄膜样品用于光催化研究.研究结果表明,利用CdS修饰TiO2/Sb2S3界面,薄膜光催化性能显著提高.由光电流-时间响应曲线发现,TiO2/CdS/Sb2S3薄膜样品可以产生更大的光电流,增强光催化性能.通过电化学阻抗谱和强度调制光电流/光电压谱表征等手段,发现利用CdS修饰TiO2/Sb2S3界面可以更好地促进电子和空穴从Sb2S3中分离,并减少复合,增强其光电流和光催化性能. In this paper,we deposited CdS thin layer on the surface of TiO2 film by successive ion layer adsorption reaction method,and then the Sb2S3 film was deposited on the surface of TiO2/CdS film by chemical bath deposition method to obtain TiO2/CdS/Sb2S3 film for photocatalysis research.Results showed that the photocatalytic performance of TiO2/Sb2S3 was significantly improved after modification with CdS.The photocurrent-time response curve showed that the TiO2/CdS/Sb2S3 film sample could provide larger photocurrent,thereby enhancing its photocatalytic performance.Moreover,electrochemical impedance spectroscopy and intensity modulated photocurrent/photovoltage spectroscopy revealed that the CdS-modified TiO2/Sb2S3 interface could promote the separation of electrons and holes from Sb2S3 and reduce their recombination,leading to the enhanced photocatalytic performance and photocurrent.
作者 姜圆圆 肖铭星 邢洁 马荣荣 刘俊宏 吴璠 JIANG Yuanyuan;XIAO Mingxing;XING Jie;MA Rongrong;LIU Junhong;WU Fan(School of Science,Huzhou University,Huzhou 313000,China;Huzhou University Qiuzhen College,Huzhou 313000,China)
出处 《湖州师范学院学报》 2020年第10期25-30,共6页 Journal of Huzhou University
基金 国家自然科学基金项目(62004068,21607041) 浙江省自然科学基金项目(Y20F040001) 国家大学生创新创业训练计划项目(2020-29) 湖州师范学院大学生创新创业训练计划项目(202001096,202001122) 湖州师范学院求真学院大学生创新创业训练计划项目(202002001) 湖州市自然科学基金项目(2019YZ02)。
关键词 Sb2S3 电荷分离界面 光催化 Sb2S3 charge separation interface photocatalysis
  • 相关文献

参考文献2

二级参考文献33

  • 1Yu J C, Ho W, Yu J, Yip H, Wong P K, Zhao J C, 2005. Efficient visible-light-induced photocatalytic disinfection on sulfur- doped nanocrystalline titania. Environmental Science and Technology, 39(4): 1175-1179.
  • 2Zhang Q Z, Qu'X H,Wang H, Xu F, Shi X Y, Wang W X, 2009. Mechanism and thermal rate constants for the complete series reactions of chlorophenols with H. Environmental Science and Technology, 43(11): 4105-4112.
  • 3Dutta P K, Pehkonen S O, Sharma V K, Ray A K, 2005. Pho- tocatalytic oxidation of arsenic(III): Evidence of hydroxyl radicals. Environmental Science and Technology, 39(6): 1827-1834.
  • 4Fukushima M, Tatsumi K, 2001. Degradation pathways of pen- tachlorophenol by photo-fenton systems in the presence of iron(III), humic acid, and hydrogen peroxide. Environmen- tal Science and Technology, 35(9): 1771-1778.
  • 5Gao F, Chen X Y, Yin K B, Dong S, Ren Z F, Yuan F et al., 2007. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Advanced Materials, 19(19): 2889- 2892.
  • 6Gonzatlez L P, 5arna V, 5anchez tO P, 2010. Degractatlon ot chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV. Biore- source Technology, 101(10): 3493-3499.
  • 7Gunlazuardi J, Lindu W A, 2005. Photocatalytic degradation of pentachlorophenol in aqueous solution employing im- mobilized TiO2 supported on titanium metal. Journal of Photochemistry and Photobiology A: Chemistry, 173(1): 51-55.
  • 8He C H, Gu M Y, 2006. Preparation, characterization and photocatalytic properties of Bil2SiO20 powders. Scripta Materialia, 55(5): 481--484.
  • 9Ho D R Senthilnanthan M, Mohammad J A, Vigneswaran S, Ngo H H, Mahinthakumar Get al., 2010. The application of photocatalytic oxidation in removing pentachlorophenol from contaminated Water. Journal of Advanced Oxidation Technologies, 13(1): 21-26.
  • 10Hu C, Hu X X, Guo J, Qu J H, 2006. Efficient destruction of pathogenic bacteria with NiO/SrBi204 under visible light irradiation. Environmental Science and Technology, 40(17): 5508-5513.

共引文献10

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部