摘要
目的采用多层学习联合建模方法挖掘气阴两虚型咳嗽的辨证证候,以期为中医学习、研究临床辨证及诊断提供新的思路与方法。方法联合采用随机森林、XGBoost及logistic回归三种机器学习算法,对767例咳嗽患者病案,运用Anaconda 3-5.2.0软件建立算法模型进行分析。结果运用该方法所得的证候结果与文献记载的证候表现大体一致,主要为呛咳、乏力、口干、痰少而色白,燥苔、脉弱等证候。经交叉验证得出,XGBoost算法准确率为86.7%,随机森林为85.3%。结论多层学习联合建模方法可弥补单独使用随机森林、XGBoost或logistic回归算法所产生的缺陷,尤其对于临床病案较少的小样本数据更为有效,该方法在一定程度上降低了重要变量丢失的可能性。
出处
《中国卫生统计》
CSCD
北大核心
2020年第6期892-894,共3页
Chinese Journal of Health Statistics
基金
国家自然科学基金面上项目(81673672)。