期刊文献+

多深度神经网络集成的道路提取 被引量:6

Road Extraction Based on Integration of Multiple Deep Neural Networks
下载PDF
导出
摘要 高分辨率遥感图像道路提取是遥感信息分析领域中的一项重要工作。尽管深度学习的高分辨率遥感影像道路提取方法已经获得了先进的性能,但大多数深度学习网络具有严重的数据依赖性,缺少一种普遍适用的网络模型。针对以上问题,分别探讨了深度神经网络的宽度及结构对高分辨率遥感图像道路提取的影响。选取3种经典的端到端网络模型(SegNet、U-Net和FRRN)进行试验,针对每种网络结构依次设置3×3、5×5、7×7的卷积核。最后,剖析卷积核的尺度对道路提取的影响,提出了一种多深度学习网络集成的道路提取方法。结果表明,对于SegNet、FRRN、U-Net网络,3×3的卷积核普遍获得了较好的道路提取结果,SegNet方法能够较好地平衡道路提取的完整性和正确性。 Road extraction from high-resolution remote sensing images data is an essential work in the field of remote sensing information analysis.The high-resolution imagery extraction method based on deep learning has achieved state-of-the-art performance.However,most deep learning networks have serious data dependence and lack a universally applicable network model.In view of the above problems,this study discusses the influence of the width of the deep neural network and the model structure on the road extraction of high-resolution imagery.Specifically,three classic end-to-end network structure models (SegNet,U-Net,and FRRN) are selected for testing,and 3×3,5×5,and 7×7convolution kernels are set for each network structure in order to explore the impact of different scale convolution kernels on road extraction.Finally,the influence of the scale of the convolution kernel on the road extraction of the network model is analyzed,and a road extraction method for multi-scale deep learning network integration is proposed.The results show that for SegNet,FRRN and u-net networks,road extraction results by the 3×3 convolution kernel are all good and for SegNet,the completeness and correctness of road extraction can be achieved.
作者 张新长 江鑫 ZHANG Xinchang;JIANG Xin(School of Geographical Sciences,Guangzhou University,Guangzhou 510000,China;Department of Geography and Planning,Sun Yat-Sen University Guangzhou 510000,China)
出处 《地理信息世界》 2020年第6期87-92,共6页 Geomatics World
关键词 高分辨率遥感影像 道路提取 深度学习 集成学习 多尺度 high-resolution imagery road extraction deep learning ensemble learning multi-scale
  • 相关文献

参考文献4

二级参考文献33

  • 1杨振亚,王勇,杨振东,王成道.一种新的RGB色差度量公式[J].计算机应用,2009,29(2):465-467. 被引量:19
  • 2周丽娟,王慧,王文伯,张宁.面向海量数据的并行KMeans算法[J].华中科技大学学报(自然科学版),2012,40(S1):150-152. 被引量:32
  • 3叶发茂,苏林,李树楷,汤江龙.高分辨率遥感影像提取道路的方法综述与思考[J].国土资源遥感,2006,18(1):12-17. 被引量:32
  • 4Atiquzzaman M. 1999. Coarse-to-Fine search technique to detectcircles in images. The International Journal of Advanced Manu- facturing Technology, 15(2): 96-102.
  • 5Bovolo F and Bruzzone L. 2007. A theoretical framework for unsu-pervised change detection based on change vector analysis in the polar domain. IEEE Transactions on Geoscience and Remote Sensing, 45(1): 218-236.
  • 6Bruzzone L and Prieto D F. 2000. Automatic analysis of the differ-ence image for unsupervised change detection. IEEE Transac- tions on Geoscience and Remote Sensing, 38(3): 1171-1182.
  • 7Castellana L, Addabbo A D and Pasquarillo G. 2007. A composedsupervised/unsupervised approach to improve change detection from remote sensing. Pattern Recognition Letters, 28(4): 405-413.
  • 8Chavez P S, Sides S C and Anderson J A. 1991. Comparison of threedifferent methods to merge multiresolution and multis- pectral data: landsat TM and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing, 57(3): 295-303.
  • 9Fung T and LeDrew E. 1987. Application of principal components analysis change detection. Photogrammetric Engineering and Remote Sensing, 53:1649-1658.
  • 10Lambin E F and Strahlers A H. 1994. Change-vector analysis inmultitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sensing of Environment, 48(2): 231-244.

共引文献216

同被引文献52

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部