期刊文献+

基于智能算法的多目标路径规划 被引量:3

Multi-objective Path Planning Based on Intelligent Algorithm
下载PDF
导出
摘要 为了解决多目标的路径规划问题,提出了一种基于JPS算法与蚁群算法的组合算法。首先,用JPS算法寻找多目标点之间两两目标点之间的最短路径,将其规划出来的路径的长度和具体信息分别储存在两个列表中,然后将储存目标点之间路径长度的列表传入蚁群算法中,寻找一次不重复遍历所有目标点的最优路径,返回一个最优组合,然后根据这个最优组合,在储存有路径具体信息的列表中找到最优组合的具体路径,这样就可以找到一条一次不重复的遍历所有目标点的路径。为了验证算法的可行性,将算法代入了一个虚拟的环境进行了模拟。 In order to solve the problem of multi-object path planning,this paper proposes a combined algorithm based on JPS algorithm and ant colony algorithm. First,use the JPS algorithm to find the shortest path between two target points between multiple target points,store the length and specific information of the planned path in two lists,and then store the path length between the target points. The list is passed into the ant colony algorithm to find the optimal path that does not repeatedly traverse all target points at once,returns an optimal combination,and then according to this optimal combination,finds the specific path of the optimal combination in the list storing the path specific information,so that you can find a path that traverses all the target points without repeating at one time. In order to verify the feasibility of this algorithm,the algorithm of this paper is substituted into a virtual environment for simulation.
作者 李传发 杨舒音 李末 孟妤 LI Chuan-fa;YANG Shu-yin;LI Mo;MENG Yu(Dalian university of technology Mechanical Engineering,Dalian Liaoning 116024,China;CMC(Beijing)Vehicle Inspection Engineering Research Institute Co.,Ltd.,Beijing 102100,China;Dalian Yiliya Technology Development Co.,Ltd.,Dalian Liaoning 116000,China)
出处 《装备制造技术》 2020年第10期96-101,共6页 Equipment Manufacturing Technology
关键词 路径规划 JPS算法 蚁群算法 path planning JPS algorithm ant colony algorithm
  • 相关文献

参考文献9

二级参考文献73

  • 1DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents [ J]. IEEE Trans on Systems, Man, and Cybernetics, 1996,26 ( 1 ) :29-41.
  • 2DOERGO M, GAMBARDELLA L M. Ant colonies for the traveling salesman problem [ J]. Bio-Systems, 1997, 43(2) : 73 - 81.
  • 3MURRAY A T, CHURCH R L. Applying simulated annealing to location- planning models[ J]. Journal of Heuristics, 1996,2(1) : 31 - 53.
  • 4ROLLAND E, SCHILLING D A, CURRENT J R. An efficient tabu search procedure for p-Median problem[ J]. European Journal of Op- erational Research, 1996, 96(2) : 329 - 342.
  • 5GLOVER F. Tabu search: part Ⅰ [ J] . ORSA Journal on Computing, 1989, 1(3) : 190 -206.
  • 6RANDALL M. A parallel implementation of ant colony optimization [ J]. Journal of Parallel and Distributed Computing, 2002, 62 (9) : 1421 - 1432.
  • 7DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimi- zation by a colony of cooperating Agents[ J]. IEEE Transactions on Systems, Man and Cybernetics, 1996, 26(1) : 23 -31.
  • 8DOERGO M, MANIEZZO V, COLORNT A. The ant system: opti- mization by a colony of eoorperating Agents[ J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996: 26(1) : 29 -41.
  • 9DORIGO M, GAMBARDELLA LM. Antcolony system: a coopera- tive learning approach to the traveling salesman problem [ J]. IEEE Transactions on Evolutionary Computation, 1997, 1 (1): 53 -66.
  • 10TSPLIIB [EB/OL]. [2014-12-22]. http: //www. iwr. uni-hei- delberg, de/groups/comopt/software/TSPLIB95/.

共引文献394

同被引文献86

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部