期刊文献+

什么造就了避险货币?——基于机器学习方法的分析 被引量:3

What Makes Safe-haven Currency: Analysis Based on Machine Learning Method
原文传递
导出
摘要 今年伊始,新冠疫情在全世界范围内肆虐,对全球经济造成了沉重打击。在当前全球不确定性不断上升的背景下,如果人民币依旧能够持续升值并保持稳健(即成为避险货币),一方面将有效地减少资本外流从而保障我国金融安全与稳定,另一方面也能够极大地提升人民币的国际地位。本文通过一个类因子模型发现,影响一国货币汇率收益与避险价值的既包括本国因素,还包括本国经济联系密切的其他各国因素(本文称其为外国因素)和全球风险因素。随后,本文利用机器学习方法对此进行了实证检验,分析表明:(1)本国与外国因素均会对货币避险价值造成影响,其中利率因素的影响最为明显,而价格水平因素的影响程度则相去甚远;(2)多数基本面因素不会直接地影响货币避险价值,但会通过影响经济基本面的各类因素对其造成显著的间接影响;(3)本国利率水平、金融要素市场建设与资本市场开放情况对于货币避险价值具有重要意义,但其中大多数外国因素对货币避险价值的影响相对较小。 Since the beginning of this year, the COVID-19 epidemic wreaked havoc all over the world and raised the risks of financial and economic crises once again. Under the background of increasing global uncertainty, if RMB can still maintain appreciation and remain stable(i.e. become a safe haven currency), on the one hand, it will effectively reduce capital outflow, thus ensuring China’s financial security and stability, on the other hand, it can greatly enhance the international status of RMB. Using an exchange rate factor model, the article finds that not only native factors but also foreign and global risk factors could affect currency performance and safe-haven value, then the theoretical result is tested by an empirical model using machine learning methods. The empirical result shows that:(1) Both native and foreign factors have certain influences on the safe-haven value of currency, and interest rate factor has the most obvious influence among all factors, while the influence of price level factor has a large gap than interest rate;(2) Fundamental factors in most countries will not directly affect the safe-haven value of currency, but will have a significant indirect impact through various factors affecting economic fundamentals;(3) Native interest rate, financial market construction level, and capital market openness are of great significance for both currency performance and safe-haven value, while most foreign factors only affect currency performance and have relative small effect on safe-haven value.
作者 丁剑平 吴洋 吴小伟 DING Jian-ping;WU Yang;WU Xiao-wei(School of Finance,Shanghai University of Finance and Economics,200433)
出处 《上海经济研究》 CSSCI 北大核心 2020年第12期88-100,共13页 Shanghai Journal of Economics
基金 2016年度国家社科基金重大项目“人民币加入SDR、一篮子货币定值与中国宏观经济的均衡研究”(批准号:16ZDA031)阶段性成果之一。
关键词 避险货币 因子模型 利率平价 随机森林模型 机器学习 Safe-haven Currency Factor Model Interest Rate Parity Random Forest Model Machine Learning
  • 相关文献

二级参考文献66

共引文献22

同被引文献43

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部