期刊文献+

基于截断核范数正则化的协方差矩阵估计 被引量:1

Truncated Nuclear Norm Regularization Based Covariance Matrix Estimation
下载PDF
导出
摘要 非均匀杂波环境导致机载雷达用于协方差矩阵估计的样本不足。本文提出了一种基于截断核范数正则化(Truncated Nuclear Norm Regularization,TNNR)的协方差矩阵估计算法以满足小样本条件下机载雷达空时自适应处理(Space Time Adaptive Processing,STAP)应用。本文利用TNNR确保所估计杂波协方差矩阵(Clutter Covariance Matrix,CCM)的低秩特性,并将NP-hard问题转换为凸优化问题。不同于常规的秩最小化算法,如核范数松弛方法,本文所提出的TNNR算法仅最小化与矩阵的秩无关的较小奇异值的和,可以更加准确地约束矩阵的秩。在此基础上本文还利用CCM的块Toeplitz结构先验信息,可确保在连续域上进行信号建模,有效避免网格点失配问题。仿真结果表明本文所提出的算法在小样本条件下可更加准确地估计CCM且STAP性能更优。 The heterogeneous clutter environment leads to the shortage of samples for covariance matrix estimation of airborne radar.this paper proposes a novel covariance matrix estimation method based on truncated nuclear norm regularization(TNNR)for airborne space time adaptive processing(STAP)with small samples.Specifically,this paper exploits TNNR to ensure the low rank estimation of the clutter covariance matrix(CCM)and transforms the NP-hard problem to a convex optimization problem.Different from the general rank minimization approach,such as nuclear norm relaxation method,the proposed TNNR algorithm in this paper only minimizes the sum of small singular values,which are independent of the rank of a matrix,approximating the rank more accurately.Moreover,the paper also utilizes the prior knowledge of the block-Toeplitz structure of the CCM,which can ensure the model established in continuous domain,avoiding the off-grid problem effectively.The simulation results indicate that the proposed algorithm can estimate CCM more accurately and achieve better STAP performance.
作者 李明 孙国皓 何子述 LI Ming;SUN Guohao;HE Zishu(School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China)
出处 《雷达科学与技术》 北大核心 2020年第6期633-639,共7页 Radar Science and Technology
基金 中国航天科技集团有限公司多传感器探测与识别技术研发中心种子基金资助项目 国家自然科学基金(No.61671139,61771095)。
关键词 机载雷达 非均匀杂波 截断核范数 空时自适应处理 协方差矩阵估计 airborne radar heterogeneous clutter truncated nuclear norm space time adaptive processing covariance matrix estimation
  • 相关文献

参考文献1

二级参考文献9

  • 1Subbaram H,Abend K.Interference Suppression via Orthogonal Projections: A Performance Analysis[].IEEE Transactions on Antennas and Propagation.1993
  • 2Tufts D W,Shah A A.Estimation of a Signal Waveform from Noisy Data Using Low-Rank Approximation to a Data Matrix[].IEEE Transactions on Signal Processing.1993
  • 3Goldstein J S,Reed I S,and Scharf L L.A Multistage Representation of the Wiener Filter Based on Orthogonal Projections[].IEEE Transactions on Information Theory.1998
  • 4Haimovich A M.The Eigencanceler: Adaptive Radar by Eigenanalysis Methods[].IEEE Transactions on Aerospace and Electronic Systems.1996
  • 5Kirsteins I P,Tufts D W.Adaptive Detection Using Low Rank Approximation to a Data Matrix[].IEEE Transactions on Aerospace and Electronic Systems.1994
  • 6Goldstein J S,Reed I S.Subspace Selection for Partially Adaptive Sensor Array Processing[].IEEE Transactions on Aerospace and Electronic Systems.1997
  • 7Goldstein J S,Reed I S.Reduced-Rank Adaptive Filtering[].IEEE Transactions on Signal Processing.1997
  • 8Haimovich A M.An Eigenanalysis Interference Canceler[].IEEE Transactions on Signal Processing.1991
  • 9Griffiths L J,Jim C W.An Alternative Approach to Linearly Constrained Adaptive Beamforming[].IEEE Transactions on Antennas and Propagation.1982

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部