摘要
基于视觉测量的目标参数获取为仿真系统的性能分析与评估提供可信的数据支持,相机参数标定的精度又决定着测量结果的可靠性。提出采用多适应值全参数自主变异粒子群的相机标定方法,利用传统标定法获取相机的初始内参,通过惯性系数收缩调整、给出基于粒距的全局因子学习调节策略、引入多适应值函数以及设计自主变异律,实现基于粒子群优化标定算法的快速和全局化收敛。实验结果显示本文方法在一定程度上提高了相机的标定精度并可以应用于实际工程之中。
The acquisition of target parameters based on visual measurement provides reliable data support for performance analysis and evaluation of simulation system.The precision of measurement results is determined by the accuracy of camera calibration.A calibration method based on full parameter autonomous mutation particle swarm optimization is proposed.Traditional calibration method is utilized to obtain the initial internal parameters.The fast and global calibration algorithm based on particle swarm optimization is achieved by inertial coefficient contraction adjustment,global factor learning adjustment strategy based on particle distance,multi-adaptation function and the independent variation law.The experimental results show that the proposed method can improve the calibration accuracy to a certain extent and can be used in practical engineering.
作者
张贵阳
薛牧遥
朱子健
霍炬
Zhang Guiyang;Xue Muyao;Zhu Zijian;Huo Ju(Control and Simulation Center,Harbin Institute of Technology,Harbin 150001,China;Space Propulsion Technology Research Institute,Shanghai Academy of Spaceflight Technology,Shanghai 201109,China)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2020年第12期2461-2468,共8页
Journal of System Simulation
基金
装备预研与航天科技联合基金(6141B061505)
国家自然科学基金(61473100)。
关键词
视觉测量
粒子群优化
自主变异
相机标定
vision measurement
particle swarm optimization
autonomous mutation
camera calibration