期刊文献+

自组织网络环境下的节点认证机制研究 被引量:3

Research on Node Authentication Mechanism in Self-organizing Network Environment
下载PDF
导出
摘要 近年来,互联网行业飞速发展,移动终端成为人们生活不可缺少的一部分。但在特定环境下,由于基础设施欠缺等外部因素的限制,移动蜂窝互联网不能提供高质量的数据通信服务。自组织网络作为下一代互联网技术,能够以一组具有无线收发装置的可移动节点组网形成临时多跳自治系统,在特定环境下为用户提供有限区域的应急通信服务。针对无线自组织网络数据缺少安全机制且覆盖范围有限的问题,文章提出自组织网络节点认证及保密通信系统,该系统能够对节点合法性进行认证,并应用数据加密方案有效保障自组织网络节点数据在链路传输时的安全。经验证,在OLSR自组织网络环境中能够获得较为稳定的传输效率,且在一定程度上能够有效保障网络节点数据安全。 In recent years,with the rapid development of Internet industry,mobile terminal has become an indispensable part of people's life.However,due to the lack of infrastructure and other external factors,mobile cellular Internet cannot provide high-quality data communication services in specific environment.As the next generation Internet technology,self-organizing network can form a temporary multi-hop self-governing system with a group of mobile nodes with wireless transceiver devices,which provides users with emergency communication services in limited area in specific environment.Aiming at the problems of lacking security mechanism for wireless self-organizing network data and short coverage,this paper proposes the self-organizing network node authentication and confidential communication system,which can authenticate the legitimacy of nodes and apply data encryption scheme to ensure effectively the security of network node data during the transmission.It has been verified that in the OLSR self-organizing network environment,relatively stable transmission efficiency can be obtained,and to a certain extent,the security of network nodes data can be effectively guaranteed.
作者 余北缘 刘建伟 周子钰 YU Beiyuan;LIU Jianwei;ZHOU Ziyu(School of Cyber Science and Technology,Beihang University,Beijing 100191,China)
出处 《信息网络安全》 CSCD 北大核心 2020年第12期9-18,共10页 Netinfo Security
基金 国家自然科学基金[61972018]。
关键词 自组织网络 节点认证 密钥分发 移动通信 下一代互联网技术 self-organizing network node authentication key distribution mobile communication next generation Internet technology
  • 相关文献

参考文献6

二级参考文献60

  • 1姚怡,覃华,苏一丹.基于Q-Learning的自适应容错路由算法的研究[J].计算机工程与应用,2006,42(10):123-125. 被引量:2
  • 2Trusted computing group(EB/OL], http://www.trustedcomputinggroup. org.
  • 3BARRETT M. Towards an open trusted computing framework[A]. MSc Thesis[C]. 2005.
  • 4BRUSCHI D, CAVALLARO L, LANZI A, et al. Replay attack in TCG specification and solution[A]. 21th Annual Computer Security Application Conference (ACSAC)[C]. Tucson, AZ, USA, 2005.
  • 5YOUN E The Analysis of Cryptographic APIs Using the Theorem Prover Otter[M]. MIT Press, 2004.
  • 6KURSAWE K, SCHELLEKENS D, PRENEEL B. Analyzing trusted platform communication[A]. CRASH Workshop: CRyptographic Advances in Secure Hardware[C]. 2005.
  • 7KAUER B. OSLO: Improving the security of Trusted Computing[R]. Technical Report, Technische Universitt Dresden, Department of Computer Science, 2007.
  • 8KOCHER P C, JAFFE J, JUN B. Differential power analysis[A].CRYPTO '99: Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology[C]. London, UK, Springer-Verlag, 1999. 388-397.
  • 9KOCHER P C. Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems[A]. CRYPTO'96: Proceedings of the 16thArmual International Cryptology Conference on Advances in Cryptology[C]. London, UK, Springer-Verlag, 1996. 104-113.
  • 10BONEH D, BRUMLEY D. Remote timing attacks are practical[A]. Proceedings of the 12th USENIX Security Symposium[C]. 2003.

共引文献29

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部