期刊文献+

基于改进V-detector算法的入侵检测研究与优化 被引量:1

Research and Optimization of Intrusion Detection Based on Improved V-detector Algorithm
下载PDF
导出
摘要 随着互联网用户数量的剧增,网络威胁也在迅速增长,传统的被动防御措施不足以防御日益多变的网络入侵。传统入侵检测系统原理是收集病毒特征再进行特征匹配,对于未知病毒,传统检测机制存在滞后性。面对日益繁杂的网络安全环境,研究基于人工免疫理论的入侵检测系统具有重要意义。文章首先介绍人工免疫理论的核心思想否定选择算法,进而介绍实值否定选择算法和V-detector算法。针对V-detector算法的不足,进行3个方面的改进:提出基于定距变异的克隆选择算法提高检测器生成效率;提出去冗算法减少检测器冗余,加快算法收敛;引入并改进假设检验方法,对检测器集合的覆盖率进行评估。实验证明,文章提出的改进V-detector算法能有效提升检测精度,减少检测黑洞,并大大缩减检测时间。 With the rapid increase in the number of Internet users, network threats are also growing rapidly. Traditional passive defense measures are not enough to defend against the everchanging network intrusions. The principle of traditional intrusion detection system is to collect virus features and then match them. For unknown viruses, the traditional detection mechanism lags behind. Facing the increasingly complex network security environment, it is of great significance to study intrusion detection system based on artificial immune theory. This paper first introduces the core idea of artificial immune theory, which is negative selection algorithm, and then introduces real value negative selection algorithm and V-detector algorithm. In view of the shortcomings of V-detector algorithm, three improvements are made. The clonal selection algorithm based on distance variation is proposed to improve the efficiency of detector generation. The de-redundancy algorithm is proposed to reduce detector redundancy and accelerate algorithm convergence. The improved hypothesis testing method is used to evaluate the coverage of the detector set. Experiments show that the improved V-detector algorithm can effectively improve the detection accuracy, reduce the detection of black holes, and greatly reduce the detection time.
作者 何泾沙 韩松 朱娜斐 葛加可 HE Jingsha;HAN Song;ZHU Nafei;GE Jiake(Department of Information Science,Beijing University of Technology,Beijing 100124,China;State Nuclear Electric Power Planning Design&Research Institute Co.,LTD.,Beijing 100095,China;School of Information,Renmin University of China,Beijing 100872,China)
出处 《信息网络安全》 CSCD 北大核心 2020年第12期19-27,共9页 Netinfo Security
基金 国家自然科学基金[61602456]。
关键词 入侵检测 V-detector算法 假设检验 intrusion detection V-detector algorithm hypothesis testing
  • 相关文献

参考文献3

二级参考文献40

  • 1弋昌厚 冯易君.用萃取色层法分离测定生物样品中锶-90.分析化学,1981,9(1):70-72.
  • 2王文基 陈伯忠 戴鲜宁 等.二苯并-18-冠-6对某些放射性核素的萃取与萃取色层分离.核化学与放射化学,1980,2(3):153-159.
  • 3XI'E Linquan,YU Fei,XU Chen. Distributed Firewall with Intrusion Detection System[J]. Journal of Computers, 2012, (12),3 110-3 115.
  • 4FORREST S, PERELSON A S, ALLEN L, et al. Self-Nonself Discrimination in a Computer[C]. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Los Alamos, CA: IEEE Computer Society, 1994:202 -209.
  • 5CASTRO L N D,VON ZUBEN F J. The Clonal Selection Algorithm with Engineering Applications[C]. Proceedings of the Genetic and Evolutionary Computation Conference. Las Vegas, USA : ACM,2000 : 36 - 37.
  • 6CASTRO L N D, VON ZUBEN F J. An Evolutionary Immune Network for Data Clustering[C]. Proceedings of the IEEE Brazilian Symposium on Artificial Neural Networks. Rio de Janeiro, Brazil : IEEE Computer Society, 2000 : 84 - 89.
  • 7MATZINGER P. Tolerance, Danger and the Extended Family[J].Annual Review of Immunology, 1994,12 (1):991 - 1 045.
  • 8AICKELIN U,BENTLEY P,CAYZER S,et al. Danger Theory:The Link Between AIS and IDS[C]. Proceedings of the Second International Conference on Artificial Immune Systems. Edinburgh:[s. n. ], 2003:147 - 155.
  • 9GREENSMITH J,AICKELIN U, CAYZER S. Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection[C]. Proceedings of the 4th International Conference on Artificial Immune Systems. Alberta:[s. n. ], 2005:153 - 167.
  • 10GREENSMITH J, AICKELIN U,TWYCORSS J. Articulation and Clarification of the Dendritic Cell Algorithm[C]. Pro- ceeding of International Conference on Artificial Immune System. Oeiras, Portugal : Springer Verlag, 2006 : 404 - 417.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部