期刊文献+

基于改进分步傅里叶算法的弯曲隧道电磁建模及仿真方法

Electromagnetic Modeling and Simulation Algorithm of Crooked Tunnels Based on Improved Split-Step Fourier Transform
下载PDF
导出
摘要 针对现有弯曲长隧道电磁建模粗糙、仿真计算效率不高的问题,论文提出了基于改进分步傅里叶算法的弯曲隧道电磁建模及仿真计算新方法。该方法通过将隧道壁衰减系数引入传统的分步傅里叶计算公式,模拟隧道壁对电磁波的散射与吸收;通过修正空间域内的相位,来表征弯曲隧道内电磁波传播过程中产生的波阵面扭转效应。仿真结果表明,新方法能高效、准确地计算出隧道内的电场分布,相较于传统的交替方向隐式有限差分方法,计算效率提高了37倍。新方法特别适用于宽、长隧道的电磁波覆盖预测和分析,为隧道环境中移动通信系统的设计与优化,提供强有力的仿真计算工具。 Aiming at the rough modeling and low calculation efficiency of existing models of long crooked tunnels,a new method of electromagnetic modeling and simulation for crooked tunnels based on improved Split-step Fourier Transform is proposed.The method simulates the scattering and absorption of electromagnetic wave by introducing the attenuation coefficient of tunnel wall into the traditional algorithm,and represents the torsion effect of wave front during the propagation of electromagnetic wave in crooked tunnel by modifying the phase in space domain.The simulation results show that the new method can calculate the electric field distribution in tunnels efficiently and accurately.Compared with the traditional Alternating Direction Implicit method,the new method has 37 times higher computational efficiency.It is especially suitable for the prediction and analysis of electromagnetic wave coverage in wide and long tunnels,which makes it a powerful simulation tool for the design and optimization of mobile communication system in tunnel environment.
作者 熊洁 段永奇 虞凯 钟选明 XIONG Jie;DUAN Yong-qi;YU Kai;ZHONG Xuan-ming(China Railway Eryuan Engineering Group Co.,Ltd.,Chengdu 610031,China;Electromagnetics Institute Southwest Jiaotong University,Chengdu 610031,China)
出处 《真空电子技术》 2020年第6期52-56,共5页 Vacuum Electronics
基金 国家自然科学基金项目(61771407) 铁二院横向项目(2018H00665)。
关键词 分步傅里叶算法 电磁建模 仿真计算 隧道 Split-step Fourier Transform Electromagnetic modeling Simulation Tunnel
  • 相关文献

参考文献3

二级参考文献23

  • 1陈大明,吴先良.基于抛物线方程求解二维电磁散射问题[J].合肥工业大学学报(自然科学版),2005,28(11):1477-1479. 被引量:4
  • 2黄小毛,张永刚,王华,唐海川.蒸发波导中电磁波异常传播特征研究及其应用[J].电子与信息学报,2006,28(8):1508-1512. 被引量:18
  • 3Chee K L, Torrico S A, and Kttrner T. Radiowave propagation prediction in vegetated residential environments[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 486-499.
  • 4Leontovich M A and Fock V A. Solution of propagation of electromagnetic waves along the earth's surface by the method of parabolic equation[J]. Journal of Physics, USSR, 1946, 10(1): 13-24.
  • 5Donohue D J and Kuttler J R. Propagation modeling over terrain using the parabolic wave equation[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 260-277.
  • 6Apaydin G and Sevgi L. Calibration of three-dimensional parabolic-equation propagation models with the rectangular waveguide problem[J]. IEEE Antennas and Propagation Magazine, 2012, 54(6): 102-116.
  • 7Janaswamy R. Path loss predictions in the presence of buildings on flat terrain: a 3-D vector parabolic equation approach[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1716-1728.
  • 8Levy M. Parabolic Equation Methods for Electromagnetic Wave Propagation[M]. London: IEEE, 2000: 5.
  • 9Feit M D and Fleck J A. Light propagation in graded-index fibers[J]. Applied Optics, 1978, 17(24): 3990-3998.
  • 10Barrios A E. A terrain parabolic equation model for propagation in the troposphere[J]. IEEE Transactions on Antennas and Propa.qation, 1994, 42(1): 90-98.

共引文献276

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部