期刊文献+

Flower-like ZnO modified with BiOI nanoparticles as adsorption/catalytic bifunctional hosts for lithium–sulfur batteries 被引量:1

下载PDF
导出
摘要 Due to the high specific capacity and energy density, lithium–sulfur battery is regarded as a potential energy storage conversion system. However, the serious shuttle effect and the sluggish electrochemical reaction kinetics impede the practical use of lithium–sulfur battery. In the interests of breaking through the above knotty problems, herein we propose to use the polar flower-like Zn O modified by Bi OI nanoparticles as bifunctional host with catalytic and adsorption ability for polysulfides in lithium–sulfur battery.It can be found that this adsorption/catalytic host integrates the functions of adsorption and mutual catalytic conversion of polysulfides, in which the polar flower-like Zn O can effectively capture the polysulfides through strong polar-polar interaction, simultaneously the BiOI nanoparticles can accelerate the mutual conversion of polysulfides to Li2 S through reducing the activation energy and conversion energy barrier required for the electrochemical reaction. As a result, under a sulfur loading of 2.5 mg cm^(-2), the lithium–sulfur battery with Zn O/Bi OI/CNT/S as cathode reveals a considerable initial specific capacity of1267 mAh g^(-1) at a current density of 0.1 C. Even the current density increased to 1 C, the capacity can reach as 873.4 mAh g^(-1), together with a good capacity retention of 67.1% after 400 cycles. Therefore,after systematically study the positive effects of the flower-like ZnO modified by catalytic BiOI nanoparticles on the adsorption and catalytic conversion of polysulfides, this work provides a new idea for the development and application of high-performance lithium–sulfur batteries.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期21-29,共9页 能源化学(英文版)
基金 supported financially by the National Key Research and Development Program of China (2018YFB0104200) the Key Project of Strategic New Industry of Hunan Province (No. 2019GK2032)。
  • 相关文献

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部