期刊文献+

一维钴分子链自旋电子器件的理论模拟

Theoretical Investigation One-dimensional Cobalt Molecular Chain Electronic Device
下载PDF
导出
摘要 自旋电子学以研究自旋为信息载体,相比传统器件具有优异的性质得到了广泛关注.以实验合成的一维钴分子链分子为基础,利用密度泛函理论结合非平衡格林函数方法,模拟分析了一维钴分子链基器件在不同磁性态的自旋极化输运性质,发现其铁磁性态具有较好的自旋极化效率,而反铁磁态无自旋电流,从理论上详细分析了自旋极化输运现象的物理本质.该结果对理解钴分子链自旋电子器件的自旋输运性质和器件应用具有一定的理论意义. Spintronics which takes spin as the carrier has attracted extensive attention due to its superior properties compared with traditional devices.Based on the experimentally synthesized one-dimensional cobalt molecular chain molecules,we simulated the spin-polarized transport properties of the one-dimensional cobalt molecular chain-based device using density functional theory combined with the non-equilibrium Green function method under different magnetic states.It is found that its ferromagnetic state shows good spin polarization efficiency,while the antiferromagnetic state has no spin current.We also carefully analyzed the physical mechanics of spin polarization transport properties in detail.These results are useful for understanding the spin transport properties the molecular device and has potential applications in spintronics with spin valves and spin transistors.
作者 潘茜茜 温世正 施锦 李梦甜 PAN Qian-qian;WEN Shi-zheng;SHI Jin;LI Meng-tian(School of Physics and Electronic Electrical Engineering,Huaiyin Normal University,Huaian Jiangsu 223300,China;Jiangsu Key Laboratory of Modern Measurement Technology and Intelligent Systems,Huaiyin Normal University,Huaian Jiangsu 223300,China)
出处 《淮阴师范学院学报(自然科学版)》 CAS 2020年第4期310-314,共5页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 国家自然科学基金项目(11604115,21403081) 江苏省高校大学生创新创业训练计划项目(201810323006Z)。
关键词 钴分子链 自旋电子学 非平衡格林函数 密度泛函理论 cobalt molecular chain spintronics non-equilibrium Green function(NEGF) density functional theory(DFT)
  • 相关文献

参考文献4

二级参考文献148

  • 1邢定钰.自旋输运和巨磁电阻——自旋电子学的物理基础之一[J].物理,2005,34(5):348-361. 被引量:29
  • 2蔡建旺,赵见高,詹文山,沈保根.磁电子学中的若干问题[J].物理学进展,1997,17(2):119-149. 被引量:49
  • 3Baibich M N, Broto J M, Fert A et al. Phys. Rev. Lett. ,1988, 61:2472 .
  • 4Binasch G, Grunberg P, Saurenbach F et al.Phys. Rev. B, 1989, 39:4828.
  • 5Berkowitz A E, etal. Phys. Rev. Lett., 1992, 68:3745.
  • 6Xiao J Q, Jiang J S, Chien C Let al. Phys. Rev. Lett, 1992,68:3749.
  • 7Julliere M. Phys. Lett. A, 1975, 54:225.
  • 8Moodera J S, Kinder L R, Wong T Met al. Phys. Rev. Lett,1995, 74:3273.
  • 9Helmolt R von et al. Phys. Rev. Lett, 1993, 71:2331.
  • 10Jin Set al. Science, 1994, 264:413.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部