期刊文献+

改进萤火虫算法在投资组合问题决策中的应用

Application of improved firefly algorithm in portfolio problem decision making
下载PDF
导出
摘要 针对传统方法求解投资问题难度大、不易实现等问题,通过分析基本萤火虫算法缺点,设计了一种改进的自适应步长萤火虫算法用于求解该问题.利用正切函数使步长自适应变化,为算法加入了惯性线性因子,利用种群最优个体重新定义位置更新公式;为了避免算法陷入局部最优,为算法设计了两种变异操作;最后,将改进萤火虫算法应用于投资组合问题中.计算结果表明:改进萤火虫算法求解该问题具有明显优势. Aiming at the difficulty of solving the investment problem by the traditional method,an improved adaptive step size firefly algorithm is designed to solve it by analyzing the shortcomings of the basic firefly algorithm.The tangent function is used to make the step size change adaptable.The inertial linear factor is added to the algorithm,and the position updating formula is redefined by using the optimal individual of the population.In order to avoid the algorithm falling into the local optimum,two kinds of mutation operations are designed for the algorithm.Finally,the improved firefly algorithm is applied to the portfolio problem,and the results show that the improved firefly algorithm has obvious advantages in solving the problem.
作者 汤涛 王付宇 TANG Tao;WANG Fuyu(School of Management Science and Engineering,Anhui University of Technology,Ma’anshan 243032,China)
出处 《广西科技大学学报》 2021年第1期121-125,共5页 Journal of Guangxi University of Science and Technology
基金 国家自然科学基金项目(71872002)资助。
关键词 投资组合 萤火虫算法 自适应步长 惯性因子 变异 investment portfolio firefly algorithm adaptive step size inertia factor variation
  • 相关文献

参考文献11

二级参考文献104

  • 1程林辉,钟珞.求解多峰函数优化问题的并行免疫遗传算法[J].微电子学与计算机,2015,32(5):117-121. 被引量:10
  • 2汪定伟,王俊伟,汪洪峰,张瑞友,郭哲.智能优化算法[M].北京:高等教育出版社,2007:26-40.
  • 3茆诗松 王静龙 濮晓龙.高等数理统计[M].北京:高等教育出版社,2003..
  • 4Artzner P, Delbaen F, Eber J M, et al. Thinking Coherently[J]. Risk, 1997,10(11): 68~71.
  • 5叶中行 林建忠.数理金融(第一版)[M].北京:科学出版社,1998..
  • 6Kendall M G, Stuart A. The advanced theory of statistics(3^rd ed)[M]. London: Griffin, 1973.
  • 7KR!SHNANAND K N, GHOSE D. Glowworm swarm optimization: a new method for optimizing multi-modal functions [ J]. International Journal of Computational Intelligence Studies,2009,1 ( 1 ) : 93- 119.
  • 8KRISHNANAND K N. Glowworm swarm optimization: a multimodal function optimization paradigm with applications to multiple signal source localization tasks [ D ]. Indian: Indian Institute of Science, 2007.
  • 9KRISHNANAND K N, GHOSE D. A glowworm swarm optimization based muiti-robot system fo signal source localization [ M]//LIU Di- kai, WANG Ling-feng, TAN K C. Design and Control'of Intelligent Robotic Systems. Berlin: Springer, 2009:53-74.
  • 10KRISHNANAND K N, GHOSE D. Chasing multiple mobile signal sources: a glowworm swarm optimization approach[ C]//Prcc of the 3rd Indian International Conference on Artificial Intelligence. [ S. ]. : IEEE Press. 2007.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部