期刊文献+

基于优化A^*和DWA算法的移动机器人避障路径规划 被引量:20

Path planning for obstacle avoidance of mobile robot based on optimized A^* and DWA algorithm
下载PDF
导出
摘要 针对移动机器人在路径规划过程中路径曲率不连续,避障能力差等问题,提出了一种将改进A^*和动态窗口法(DWA)相结合的路径规划方法。首先,在传统的A^*算法基础上,将传统的8个搜索方向改为5个,提高搜索效率;其次,将Floyd算法思想引入A^*算法中,设计了一种新的启发式搜索函数,实现了无斜穿障碍物顶点,增加了路径的平滑度;最后,融合改进算法以及动态窗口法,构造了新的评价函数,在保证规划路径全局最优性的基础上达到避障效果。仿真结果表明:该研究对于移动机器人自主导航的应用具有一定的参考价值。 A path planning method combining with an improved A^* and Dynamic Window Approach(DWA)is proposed to address the problems of discontinuous path curvature and inefficient obstacle avoidance in the path planning of mobile robots.Firstly,based on the traditional A^* algorithm,the conventional eight search directions are deduced to five for improving the search efficiency.Secondly,the Floyd algorithm is introduced into the A^* algorithm,and a new heuristic search function is designed to achieve no oblique through the vertex of the obstacle,and to increase the smoothness of the path.Finally,a novel evaluation function is constructed by fusing the improved algorithm with the DWA to avoid barriers while ensuring the global optimization of the planned path.The simulation results indicate that this research makes some practical sense for the implementation of autonomous navigation of mobile robots.
作者 曹毅 周轶 张亚宾 Yi CAO;Yi ZHOU;Ya-bin ZHANG(College of Electrical Engineering,Henan University of Technology,Zhengzhou 450000,China)
出处 《机床与液压》 北大核心 2020年第24期246-252,共7页 Machine Tool & Hydraulics
基金 河南省教育厅自然科学基金项目(20A413004) 小麦和玉米深加工国家工程实验室(NL2016012) 河南省创新科技人员队伍建设项目(114100510015)。
关键词 移动机器人 路径规划 A^*算法 DWA算法 全局最优 Mobile robot Path planning A^*algorithm DWA algorithm Global optimization
  • 相关文献

参考文献6

二级参考文献38

  • 1郭孔辉,姜辉,张建伟,丁海涛.基于模糊逻辑的自动平行泊车转向控制器[J].吉林大学学报(工学版),2009,39(S2):236-240. 被引量:22
  • 2[1]Nearchou A C.Path planning of a mobile robot using genetic heuristics[J].Robotica,1998,16(5):575-588.
  • 3[4]D Amico A,Ippoliti G,Longhi S.A radial basis function networks approach for the tracking problem of mobile robots[C]//Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Como,Italy,2001,1:498-503.
  • 4[5]Allan R Willms,Simon X.Neural network approaches to dynamic collision-free robot trajectory generation[J].IEEE Trans Syst Man,Cybern,2001,31(3):302-318.
  • 5[6]Yang S X,Max M.An efficient neural network approach to dynamic robot motion planning[J].Neural Networks,2000,13(2):143-148.
  • 6[7]Karen I Trovato,Leo Dorst.Differential A*[J].IEEE Transactions on Knowledge and Data Engineering,2002,14(6):1218-1229.
  • 7[8]Bruce J,Veloso M.Real-time randomized path planning for robot navigation[C]//Proceedings for the IEEE/RSJ International Conference on Intelligent Robots and System.EPFL,Lausanne,Switzerland,2002,3:2383-2388.
  • 8[9]Peng Cheng,Steven M LaValle.Resolution complete rapidly-exploring random trees[C]//IEEE International Conference on Robotics and Automation.Washington,2002:267-272.
  • 9钱堃,马旭东,戴先中.基于概念地图的机器人导航方法[J].东南大学学报(自然科学版),2010,40(S1):144-148. 被引量:5
  • 10杨淮清,肖兴贵,姚栋.一种基于可视图法的机器人全局路径规划算法[J].沈阳工业大学学报,2009,31(2):225-229. 被引量:48

共引文献188

同被引文献278

引证文献20

二级引证文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部