摘要
针对宏微运动平台加速度难以提升的问题,采用串联思想,构建了一种以"多宏+单微+多宏"驱动的浮动定子式的超高加速宏微运动平台。首先介绍了超高加速宏微运动平台的结构组成并搭建了其整体动力学模型。其次,从振动能量角度出发,选取不同驱动方式和浮动定子模式,并通过改变不同音圈电机的级数n,探究了平台系统振动能量衰减率的变化规律。最后,通过选取n=1的超高加速宏微运动平台作为试验对象,试验结果表明:当分别采取双浮动定子模式和单浮动-单固定模式时,系统振动能量衰减率β11和β21分别约为89.32%和82.6%,与仿真分析结果误差分别约为3.75%和9.03%。因此,采用多级浮动定子模式的超高加速宏微运动平台具有较好的振动抑制效果。
It is difficult to improve the acceleration of macro-micro motion platform. Thus,in this article,based on the series of ideas,the super-accelerating macro-micro motion platform with the floating stator is set up,which is driven by "more macrosingle micro-more macro". The structure of this platform is explored and the whole dynamic model is worked out. Then,the energy attenuation of this platform is identified by means of different drive modes and floating-stator modes. The analysis is conducted on the changing law of energy attenuation by the level number n of different voice coil motors. The super-accelerating macro-micro motion platform with n = 1 is selected for the experiment. The results show that the energy-attenuation rate of the system β11 is about89. 32% under the double floating-stator mode and the energy-attenuation rate of the system β21 isabout 82. 6% under the singlefloating and single-fixed mode;the analytical error is about 3. 75% and 9. 03% respectively. Therefore,the super-accelerating macro-micro motion platform under the multi-level floating-stator mode has desirable vibration suppression.
作者
马兵
张璐凡
聂福全
周强
李虎
MA Bing;ZHANG Lu-fan;NIE Fu-quan;ZHOU Qiang;LI Hu(Key Laboratory of Road Construction&Equipment of MOE,Chang'an University,Xi'an 710064;Henan Wcihua Heavy Machinery Co.,Ltd.,Changyuan 453400;Shanxi Lu'an Coal Technology Equipment Co.,Ltd.,Changzhi 046000;School of Mechanical and Electrical Engineering,Henan University of Technology,Zhengzhou 450001)
出处
《机械设计》
CSCD
北大核心
2020年第11期27-32,共6页
Journal of Machine Design
基金
国家青年科学基金资助项目(51705132)
河南工业大学青年骨干教师培育计划资助项目
河南工业大学创新基金计划资助项目
河南省教育厅自然科学项目(21A460006)。
关键词
浮动定子结构
超高加速
宏微运动平台
振动能量
能量衰减率
floating stator
super acceleration
macro-micro motion platform
vibration energy
energy attenuation