摘要
语义角色标注是自然语言处理领域的一个研究热点,其成果已经被广泛应用于智能问答、信息抽取、知识图谱等领域。提出了一种基于Bert模型的框架语义角色标注方法,将序列标注的思想应用到框架语义角色标注中。由于框架元素种类过多,构建了框架元素到全局语义角色的映射关系。在Bert预训练网络的基础上,增加双向LSTM层以及CRF层,构建序列标注模型,该模型同时考虑上下文信息、词元信息以及框架类型信息,在FrameNet语义角色标注数据上的测试性能优于对照模型,证明了该方法的有效性。
Semantic role labeling is one of the hot topics of natural language processing.It has been widely used in question answering,information extraction,knowledge graph,etc.This paper presents a frame-semantic role labeling method based on the famous pre-trained model named Bert.Our method adopts the idea of sequence labeling to label frame-semantic roles.As there are too many frame elements,we create the mappings between frame elements and global semantic roles.Our sequence labeling model is constructed on Bert network with a bidirectional LSTM layer and a CRF layer.The model takes into consideration of contexts,lexical units and frame types and outperforms the control models,which proves the effectiveness of our method.
作者
高李政
周刚
黄永忠
罗军勇
王树伟
GAO Lizheng;ZHOU Gang;HUANG Yongzhong;LUO Junyong;WANG Shuwei(State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China;Guilin University of Electronic Technology, Guilin 541000, China)
出处
《信息工程大学学报》
2020年第3期297-303,共7页
Journal of Information Engineering University
基金
国家自然科学基金资助项目(61602508,61866008)。