期刊文献+

基于LSTM的钓鱼邮件检测系统 被引量:3

Phishing Mail Detection System Based on LSTM Neural Network
下载PDF
导出
摘要 提出了一种基于LSTM的钓鱼邮件检测方式.该方式主要由两部分构成:分别为数据扩充部分及模型训练部分.数据扩展部分中,通过KNN与K-means算法扩大训练数据集,保证数据的数量能够满足深度学习算法的需要.在模型训练部分中,通过对数据进行预处理并将其转化为词向量矩阵,最后将转化完词向量通过训练得到LSTM神经网络模型.最终,可以根据训练好的LSTM模型将邮件分为正常邮件以及钓鱼邮件.通过实验对提出的算法进行了评估,实验结果显示提出的算法准确率可以达到95%. A long short-term memory(LSTM)-based phishing email detection method was proposed.This method was arranged mainly with two parts:data expansion part and model training part.In the data extension part,KNN and K-means algorithms were used to extend the training data set to make the number of data sets capable support deep learning algorithms.In the model training part,the data were preprocessed and transformed into a word vector matrix.And then the word vector matrix was trained to form LSTM neural network model.Finally,the mail can be divided into normal mail and phishing mail according to the trained LSTM model.Experiments were carried out to evaluate the proposed algorithm.The experimental results show that the proposed algorithm can achieve the accuracy up to 95%.
作者 张鹏 孙博文 李唯实 徐君锋 孙岩炜 ZHANG Peng;SUN Bo-wen;LI Wei-shi;XU Jun-feng;SUN Yan-wei(China Information Technology Security Evaluation Center,Beijing 100085,China;School of Cyberspace Security,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第12期1289-1294,共6页 Transactions of Beijing Institute of Technology
基金 国家协同创新专项课题资助项目(2016QY06X1205)。
关键词 钓鱼邮件 深度学习 LSTM神经网络 phishing email deep learning long short-term memory(LSTM)neural network
  • 相关文献

参考文献3

共引文献64

同被引文献33

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部